АВТОНОМНАЯ НЕКОММЕРЧЕСКАЯ ОРГАНИЗАЦИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-КАВКАЗСКИЙ СОЦИАЛЬНЫЙ ИНСТИТУТ»

Утверждаю Декан факультета _____ Ж.В. Игнатенко «19» мая 2025 г.

Методические указания

к семинарам и по выполнению самостоятельной работы ЭЛЕМЕНТЫ ВЫСШЕЙ МАТЕМАТИКИ

Специальность: 09.02.09 Веб-разработка	
Квалификация: разработчик веб-приложен	ий
Направленность: Разработка веб-приложен	ния на стороне клиента
Форма обучения очная	
Рекомендована на заседании кафедры ПИМ от «19» мая 2025 г. протокол № 10 Зав. кафедрой Д.Г.Ловянников	Согласована зав. кафедрой ПИМ Д.Г.Ловянников
Одобрена на заседании учебно-методической комиссии ФИСТ от «19» мая 2025 г. протокол № 9 Председатель УМК Ж.В. Игнатенко	

Содержание

Пояснительная записка	3
1. Методические указания для студентов по работе с лекционным материалом	3
2. Методические указания для студентов по работе на практических занятиях	5
3. Методические указания по изучению источников информации по дисциплине	5
4. Выполнение творческих заданий	6
5. Учебно-методическое и информационное обеспечение дисциплины	.17
6. Практические занятия по дисциплине	19

Пояснительная записка

Самостоятельная работа является обязательной формой работы по дисциплине «Элементы высшей математики». Умение самостоятельно получать новые знания и повышать свою квалификацию является неотъемлемой составляющей образования в современном вузе. Основной целью самостоятельной работы является расширенное и углубленное изучение вопросов, рассматриваемых на лекциях, а также выходящих за рамки контактного обучения, но входящего в общий объем знаний дисциплины.

Самостоятельное выполнение заданий, реферирование материалов способствует развитию у студентов навыков работы с учебной литературой, научными публикациями, использования электронных ресурсов, а также формированию способностей к обобщению и структуризации полученных знаний.

Самостоятельная работа по дисциплине «Элементы высшей математики» включает:

- подготовку к лекциям и практическим занятиям;
- изучение источников информации по дисциплине: учебной литературы, конспектов лекций, электронных ресурсов;
 - выполнение творческих заданий;
 - выполнение заданий указанных в методических рекомендациях;
 - подготовка к текущему и итоговому контролю.

1. Методические указания длястудентов по работе с лекционным материалом.

Изучение дисциплины следует начинать с проработки рабочей программы, особое внимание, уделяя целям и задачам, структуре и содержанию курса.

При подготовке к занятиям студент должен просмотреть конспекты лекций, рекомендованную литературу по данной теме; подготовиться к ответу на контрольные вопросы.

Успешное изучение курса требует от студентов посещения лекций, активной работы на практических занятиях, выполнения всех учебных заданий преподавателя, ознакомления основной и дополнительной литературой.

Запись лекции — одна из форм активной самостоятельной работы студентов, требующая навыков и умения кратко, схематично, последовательно и логично фиксировать основные положения, выводы, обобщения, формулировки. Культура записи лекции — один из важнейших факторов успешного и творческого овладения знаниями. Последующая работа над текстом лекции воскрешает в памяти ее содержание, позволяет развивать аналитическое мышление. В конце лекции преподаватель оставляет время (5-10 минут) для того, чтобы студенты имели возможность задать уточняющие вопросы по изучаемому материалу.

Лекции имеют в основном обзорный характер и нацелены на освещение наиболее трудных и дискуссионных вопросов, а также призваны способствовать формированию навыков работы с научной литературой. Предполагается также, что студенты приходят на лекции, предварительно проработав соответствующий учебный материал по источникам, рекомендуемым программой.

Работа с конспектом лекций предполагает просмотр конспекта в тот же день после занятий, пометку материала конспекта, который вызывает затруднения для понимания. Попытайтесь найти ответы на затруднительные вопросы, используя рекомендуемую

литературу. Если самостоятельно не удалось разобраться в материале, сформулируйте вопросы и обратитесь за помощью к преподавателю на консультации или ближайшей лекции. Регулярно отводите время для повторения пройденного материала, проверяя свои знания, умения и навыки по контрольным вопросам.

Как слушать лекцию.

- 1. Выделяйте основные положения. Нельзя понять и запомнить все, что говорит лектор, однако можно выделить основные моменты. Для этого необходимо обращать внимание на вводные слова, словосочетания, фразы, которые используются, как правило, для перехода к новым положениям, выводам и обобщениям.
- 2. Старайтесь поэтапно (в момент завершения вопроса, подвопроса, тезиса и т.п.) анализировать и обобщать материал. Это готовит базу для его экономной, свернутой записи.
- 3. Старайтесь опережать речь лектора, предугадать дальнейшее содержание. С каждым случаем удачи улучшается понимание и запоминание отдельных положений лекции. Даже при неудачах качество восприятия лекции повышается, т.к. вы имеете возможность сравнить ваши предложения и утверждения лектора.
- 4. Будьте постоянно готовы слушать лекцию до конца, не поддавайтесь соблазну «отдохнуть» на длинной лекции.

Как правильно записывать лекцию.

- 1. Подготовьте специальную тетрадь для записи лекций: оставьте поля (для вопросов, мелких пометок и рисунков, собственных замечаний и т.д.), оставляйте при записи между строчками интервал (для дополнений, подчеркиваний и т.п.).
- 2. Не пишите лекцию дословно, подробно записывайте основную информацию, а дополнительные и вспомогательные сведения очень кратко.
 - 3. Применяйте систему условных сокращений:
- а) сокращение общепринятых вспомогательных слов: так как, например (т.к., напр.), так далее (т.д.), таким образом, главным образом (т.о., гл.обр.), смотри (см), может быть (м.б.), так называемый (т.н.), какой-либо (к-л.), который (кт. или ктр.), несколько (неск.), чтобы (чбы.) и т.д.
 - б) аббревиатуры для ключевых слов курса,
- в) сокращение известных слов до начальной части, например, коэффициент (коэфф.), однократный (однокр.); в некоторых случаях целесообразно использовать латинский алфавит: максимум (max), минимум (min), температура (t) и т.п.
- г) используйте для сокращений математическую, символику: больше (>), меньше (<), сумма (Σ), приближенно (\approx), следовательно (=>) и другие.
 - 4. При записи и работе над конспектом лекции используйте условные знаки:

I - прочитать ещё раз, Y - важно, Z - законспектировать ! - смело, ? - непонятно, S -слишком сложно, A - согласен, N - ново и др.

2. Методические указания для студентов по работе на практических занятиях.

Практические занятияпосвящаются, главным образом, решению упражнений по дисциплине. Специфика предмета такова, что студент должен уже уметь решать задачи по теории вероятностей, математической статистике, и владеть основными методами и приемами решения текстовых задач. Если у студента присутствуют пробелы в этой области, то перед изучением темы и при подготовке к практическим занятиям, студенту необходимо повторить (изучить) соответствующий раздел математики, чтобы на практических занятиях усвоить основные вопросы.

3. Методические указания по изучению источников информации по дисциплине

Самостоятельная работа с учебниками, книгами, конспектами, электронными ресурсами — это важнейшее условие формирования у себя научного способа познания. Основные советы здесь можно свести к следующим:

- 1. Составить перечень книг, с которыми Вам следует познакомиться.
- 2. Сам такой перечень должен быть систематизированным (что необходимо для семинаров, что для экзаменов, что пригодится для написания курсовых и дипломных работ, а что Вас интересует за рамками официальной учебной деятельности, то есть что может расширить Вашу общую культуру...).
- 3. Обязательно выписывать все выходные данные по каждой книге (при написании курсовых и дипломных работ это позволит очень сэкономить время).
- 4. При составлении перечней литературы следует посоветоваться с преподавателями (или даже с более подготовленными и эрудированными сокурсниками), которые помогут Вам лучше сориентироваться, на что стоит обратить большее внимание, а на что вообще не стоит тратить время...
- 5. Естественно, все прочитанные книги, учебники и статьи следует конспектировать, но это не означает, что надо конспектировать «все подряд»: можно выписывать кратко основные идеи автора и иногда приводить наиболее яркие и показательные цитаты (с указанием страниц).
- 6. Если книга Ваша собственная, то допускается делать на полях книги краткие пометки или же в конце книги, на пустых страницах просто сделать свой «предметный указатель», где отмечаются наиболее интересные для Вас мысли и обязательно указываются страницы в тексте автора (это очень хороший совет, позволяющий экономить время и быстро находить «избранные» места в самых разных книгах).
- 7. Если Вы раньше мало работали с научной литературой, то следует выработать в себе способность «воспринимать» сложные тексты; для этого лучший прием научиться «читать медленно», когда Вам понятно каждое прочитанное слово (а если слово незнакомое, то либо с помощью словаря, либо с помощью преподавателя обязательно его узнать); опыт показывает, что после этого студент быстро и качественно прорабатывает книги.
- 8. Есть еще один эффективный способ оптимизировать знакомство с научной литературой следует увлечься какой-то идеей и все книги просматривать с точки зрения данной идеи. В этом случае студент будет как бы искать аргументы «за» или «против» интересующей его идеи, и одновременно он будет как бы общаться с авторами этих книг по поводу своих идей и размышлений... Чтение научного текста является частью познавательной деятельности. Ее цель извлечение из текста необходимой информации. От того на сколько осознанна читающим собственная внутренняя установка при обращении к печатному слову (найти нужные сведения, усвоить информацию полностью

или частично, критически проанализировать материал и т.п.) во многом зависит эффективность осуществляемого действия. Для студентов основным видом чтения учебной литературы является изучающее чтение, которое предполагает доскональное освоение материала; в ходе такого чтения готовность принять изложенную информацию, реализуется установка на предельно полное понимание материала; именно оно позволяет в работе с учебной литературой накапливать знания в различных областях. Вот почему именно этот вид чтения в рамках учебной деятельности должен быть освоен в первую очередь. Кроме того, при овладении данным видом чтения формируются основные приемы, повышающие эффективность работы с научным текстом.

Основные виды систематизированной записи прочитанного:

- 1. Аннотирование предельно краткое связное описание просмотренной или прочитанной книги (статьи), ее содержания, источников, характера и назначения;
- 2. Планирование краткая логическая организация текста, раскрывающая содержание и структуру изучаемого материала;
- 3. Тезирование лаконичное воспроизведение основных утверждений автора без привлечения фактического материала;
- 4. Цитирование дословное выписывание из текста выдержек, извлечений, наиболее существенно отражающих ту или иную мысль автора;
- 5. Конспектирование краткое и последовательное изложение содержания прочитанного. Конспект сложный способ изложения содержания книги или статьи в логической последовательности. Конспект аккумулирует в себе предыдущие виды записи, позволяет всесторонне охватить содержание книги, статьи. Поэтому умение составлять план, тезисы, делать выписки и другие записи определяет и технологию составления конспекта.

Методические указания по составлению конспекта:

- 1. Внимательно прочитайте текст. Уточните в справочной литературе непонятные слова. При записи не забудьте вынести справочные данные на поля конспекта;
 - 2. Выделите главное, составьте план;
- 3. Кратко сформулируйте основные положения текста, отметьте аргументацию автора;
- 4. Законспектируйте материал, четко следуя пунктам плана. При конспектировании старайтесь выразить мысль своими словами. Записи следует вести четко, ясно. 8
- 5. Грамотно записывайте цитаты. Цитируя, учитывайте лаконичность, значимость мысли. В тексте конспекта желательно приводить не только тезисные положения, но и их доказательства. При оформлении конспекта необходимо стремиться к емкости каждого предложения. Мысли автора книги следует излагать кратко, заботясь о стиле и выразительности написанного. Число дополнительных элементов конспекта должно быть логически обоснованным, записи должны распределяться в определенной последовательности, отвечающей логической структуре произведения. Для уточнения и дополнения необходимо оставлять поля. Овладение навыками конспектирования требует от студента целеустремленности, повседневной самостоятельной работы.

4. Выполнение творческих заданий

Творческие задания — одна из форм самостоятельной деятельности студентов. Они способствуют углублению знаний по математике, ускорению темпов овладения информационными технологиями, выработке устойчивых навыков самостоятельной работы, экономии времени, снижению нагрузки.

В качестве главных признаков творческих работ обучающихся можно выделить:

- высшая степень самостоятельности;
- умение логически обрабатывать материал;
- умение самостоятельно сравнивать, сопоставлять и обобщать его;

- умение классифицировать по тем или иным признакам;
- умение высказывать своё отношение к описываемым явлениям и событиям;
- давать собственную оценку какой-либо работы

Задания

Ниже представлены типовые задачи, которые охватывают необходимые знания рассматриваемой дисциплины.

Типовой расчёт по линейной алгебре Вариант 1.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
<u>Задача 1.</u> Даны матрицы А □ □ □ 3 □ 3 □ С □ □ 1 2 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
1)Вычислить матрицу -A - 2C - 3C ^T ; 2) Выполняется ли равенство AC=CA?
3) Вычислить определители $ A , C , AC $ и проверить равенство $ AC \square CA \square CA \square A $.
4) Привести к диагональному виду и вычислить определитель $\begin{vmatrix} \Box 1 & \Box 7 & 7 & 3 \\ 4 & 1 & \Box 2 & \Box 2 \\ \Box 5 & 6 & 2 & 2 \\ 0 & \Box 2 & 1 & \Box 2 \end{vmatrix}$
5) Решить системы уравнений:
а)по формулам Крамера и матричным методом
<u>Задача 2.1)</u> Построить точки и векторы: a) A(6, 0), B(-7, 4), \overline{AB} ; б) $C(3,0,9)$, $D(-7,-1,1)$, \overline{CD} ; 2) Даны векторы: $\overline{a}(1,\square 4)$, $\overline{b}(3,\square 1)$. Вычислить и изобразить в
системе координат следующие линейные комбинации этих векторов
$2 \Box a \Box b, a \Box b, a \Box b, a \Box b$. 3) Найти линейную комбинацию векторов: $a \Box (\Box 3, 6, 4, 10),$
$\bar{b} \ \Box \ (1,1,8,\Box \ 1)$, $\bar{c} \ \Box \ (3,1,\Box \ 1,3)$ с коэффициентами $\Box = -10, \ \Box = -5, \ \Box = 4;$ 4) Будут ли
векторы линейно зависимы или линейно независимы в следующих трёх случаях:
$3)\overline{a} = (0, 12, 2)b + (1, 5)(2, (12), 5)(0), 7c + (23, 12)(2), b - (1, -1, -1);$
Задача 3. Даны три вектора: $\overline{a} \Box (\Box 1, \Box 1, 2), \overline{b} \Box (1, \Box 7, \Box 3), c \Box (4, \Box 2, \Box 6).$
Доказать d , b , ϵ \Box образует базис в \mathbf{R}^3 . Найти разложение вектора \overline{d} \Box (4, \Box 10, \Box 7) по этому базису.
$\overline{3}$ адача 4.1)Даны векторы $\overline{a}(\Box 1,5,1),\overline{b}(1,\Box 2,\Box 7)$. Найти $\overline{a}, \Box \overline{(a,b)}, np_b(2 \Box a \Box$
a = b). 2)а) При каком значении x вектор $a = (2,4,x)$ ортогонален вектору $b = (4, -1,0)$.
б) При каких значениях x,y векторы $\overline{a} \square (2,4,5)$ и $\overline{b} \square (x,y,\square 1)$ параллельны?

C(1,0,-4), $D(-2,-1,0)$. Вычислить: a) объём пирамиды; б) высоту, опущенную из вершины A; 5) Выяснить, лежат ли точки $D(-3,14,2)$ и $E(11,2,6)$ в плоскости ABC, где A(-4,-1,0), $B(0,-1,-3)$, $C(0,3,-4)$.
Вариант 2.
1)Вычислить матрицу A + 2C - 17C ^T ; 2) Выполняется ли равенство AC=CA? 3) Вычислить определители $ A , C , AC $ и проверить равенство $ AC \square CA \square CA $.
4) Привести к диагональному виду и вычислить определитель $\begin{vmatrix} 5 & \Box 7 & 1 & 3 \\ 3 & 1 & \Box 2 & \Box 2 \\ \Box 4 & 3 & 2 & 2 \\ 1 & \Box 2 & 1 & \Box 2 \end{vmatrix}$
5) Решить системы уравнений :а)по формулам Крамера и матричным методом
<u>Задача 2.1</u>)Построить точки и векторы: a) A(-1, 0), B(-7, -7), \overline{AB} ; 6)C(3,-3, 9), D(-7, -1, 1), \overline{CD} ; 2)Даны векторы: \overline{a} (1,6), \overline{b} (\Box 5, \Box 1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов
$2 \square a \square b, a \square b, a \square b, a \square b$. 3) Найти линейную комбинацию векторов: $a \square (\square 3, 6, 4, 10),$
$\bar{b} \ \Box \ (1,1,\Box \ 1,\Box \ 1)$, $c \ \Box \ (3,1,\Box \ 1,3) \ \ c \ коэффициентами \ \Box = \ -1, \ \Box = \ -5, \ \Box = \ 7; \ \textbf{4}) \ Будут ли$
векторы линейно зависимы или линейно независимы в следующих трёх случаях:
<u>Задача 3.</u> Даны три вектора: $\overline{a} \Box (\Box 1, \Box 1, 2), \overline{b} \Box (1, \Box 7, \Box 3), c \Box (4, \Box 2, \Box 6).$
Доказать d , b , c образует базис в \mathbf{R}^3 . Найти разложение вектора $\overline{d} \Box (4, \Box 10, 5)_{\Pi O}$ этому базису.
<u>Задача 4.</u> 1)Даны векторы $\overline{a}(\Box 1, \Box 2, 1), \overline{b}(1, \Box 2, 0)$. Найти $\overline{a}, \Box (\overline{a}, \overline{b}), np_b(2 \Box \overline{a} \overline{\Box b})$.
2)а) При каком значении x вектор $\overline{a} \square (\square 1,4,x)$ ортогонален вектору $\overline{b} \square (6,\square 1,0)$. 6) При каких значениях x , y векторы $\overline{a} \square (\square 1,4,5)$ и $\overline{b} \square (x,y\square 1)$ параллельны? 3) Вычислить площадь и высоту треугольника с вершинами $A(1,-3,1)$, $B(-9,0,2)$,
C(7,10,-2). 4) Вершины треугольной пирамиды находятся в точках $A(-3,-3,4)$, $B(0,3,4)$,

3) Вычислить площадь и высоту треугольника с вершинами A(9,-3,1), B(-9,0,3), C(7,-9,-1)

4) Вершины треугольной пирамиды находятся в точках A(-3, -3, 4), B(0, 3, 4),

2).

C(1,0,-4), D(-1,-1,0). Вычислить: **а)** объём пирамиды; **б)** высоту, опущенную из вершины A; **5)** Выяснить, лежат ли точки D(-3,17,2) и E(1,2,6) в плоскости ABC, где A(-4,-1,0), B(0,-1,-3), C(0,3,-4).

Типовой расчет по математическому анализу (техника дифференцирования и вычисление пределов) Вариант 1.

Задача 1.

Вычислить производные следующих функций

Задача 2.

Вычислить производные у'=у'(х) функций, заданных неявно, и функций, заданных параметрически.

1)
$$x^4 \Box 6 xy^3 \Box 9 \ y^4 \Box 5x^2 \Box 100 \Box 0;$$
 2) $\sin(y \Box x^2) \Box 2 \Box x \Box x^3 \Box 3;$
3) $\Box x \Box 3t \Box 2 \Box y \Box 4t^3;$ 4) $\Box x \Box a \cos^2 t \Box y \Box b \sin^2 t$

Задача 3.

Исследовать функцию на непрерывность. Указать точки разрыва и характер разрыва.

Задача 4.

Найти пределы функций, не используя правило Лопиталя.

1)
$$\lim_{x \to 1} \frac{x^2 \oplus 3x \oplus 2}{x^3 \oplus 1}$$
; 6) $\lim_{x \to 0} \frac{e^{\oplus x} \oplus 1}{\operatorname{arctg}(x^3 \oplus x)}$; 11) $\lim_{x \to 0} \frac{\sin 3x \oplus \sin 5x}{\sin 7x}$; 2) $\lim_{x \to 0} \frac{x^2 \oplus x}{e^{\frac{1}{2}}}$; 7) $\lim_{x \to 0} \frac{e^x \oplus e^{3x}}{x}$; 12) $\lim_{x \to 0} \frac{x^4 \oplus 5x^2 \oplus 2x \oplus 15}{[9x^3 \oplus 66x^2 \oplus 99x \oplus 1]}$; 3) $\lim_{x \to 0} \frac{x^2 \oplus 3x \oplus 1}{[2x^3 \oplus 4x \oplus 7]}$; 8) $\lim_{x \to 0} \frac{x^2 \oplus 3x \oplus 1}{x \oplus 1}$; 13) $\lim_{x \to 0} \frac{1105}{x}$; 14) $\lim_{x \to 0} \frac{3^x \oplus 1^2}{3x} \oplus 1$. 5) $\lim_{x \to 0} \frac{\operatorname{arcsin} 2x}{\operatorname{ln}(1 \oplus 3x)}$; 10) $\lim_{x \to 0} \frac{x^3 \oplus 5x^2 \oplus 4x \oplus 7}{3 \oplus 8x \oplus 12}$; 2x

Задача 5.

Найти следующие пределы, используя правило Лопиталя.

1)
$$\lim_{x \to 0} \frac{3x^2 - 2x - 5}{4x^3 - x - 7};$$
 5) $\lim_{x \to 0} \frac{1 - \cos 6x}{1 - \cos 8x};$ 9) $\lim_{x \to 0} x \ln x;$ 2) $\lim_{x \to 0} \frac{x^5 - 5x^2 - 7}{3x^4 - 8};$ 6) $\lim_{x \to 0} \frac{1 - \cos 4x}{-2x};$ 10) $\lim_{x \to 0} \frac{1}{x^2} - \frac{1}{\sin^2 x} = \frac{1}{x};$ 3) $\lim_{x \to 0} \frac{\sin^2 2x}{6x^2};$ 7) $\lim_{x \to 0} \frac{1 - \cos 4x}{x^2};$ 11) $\lim_{x \to 0} \frac{1}{x} - \frac{3}{x} = \frac{x}{x}$ 4) $\lim_{x \to 0} \frac{\sin 3x}{2};$ 8) $\lim_{x \to 0} \frac{1 - \sin 3x}{x};$ 2.

Вариант 2.

Задача 1.

Вычислить производные следующих функций

Задача 2.

Вычислить производные у'=у'(х) функций, заданных неявно, и функций, заданных параметрически.

1)
$$x^{4} \stackrel{y}{=} 3^{\lambda y_3} \square 5;$$
 2) $x \stackrel{\Box}{=} e^{\square t};$ 4) $x \stackrel{\Box}{=} x \stackrel{\Box}{=} a \cos^3 t.$

Задача 3.

Исследовать функцию на непрерывность. Указать точки разрыва и характер разрыва.

Задача 4.

Найти пределы функций, не используя правило Лопиталя.

1)
$$\lim_{x \to 0} \frac{x^2 - 3x - 2}{x^3 - 1};$$
 6) $\lim_{x \to 0} \frac{e^{2x} - 1}{arctg(x^2 - 2x)};$ 11) $\lim_{x \to 0} \frac{\sin 8x - \sin 5x}{\sin 3x};$ 2) $\lim_{x \to 0} \frac{x^2 - 2x}{x^2};$ 7) $\lim_{x \to 0} \frac{e^{3x} - e^x}{x};$ 12) $\lim_{x \to 0} \frac{x^3 - x^4 - 7x - 19}{19x^3 - 66x^2 - 99^{x} - 1};$ 3) $\lim_{x \to 0} \frac{x^3 - 2x - 5}{2x^8 - 4x - 7};$ 8) $\lim_{x \to 0} \frac{1}{x^2 - 2};$ 13) $\lim_{x \to 0} \frac{\ln(2 - x) - \ln 2}{x};$ 4) $\lim_{x \to 0} \frac{\sin 4^x}{16x^3};$ 9) $\lim_{x \to 0} \frac{x^2 - 4 - 2}{x^2 - 2x^2};$ 14) $\lim_{x \to 0} \frac{5^x - 2^{-2^x}}{5x}.$ 5) $\lim_{x \to 0} \frac{arctg3x}{\ln(1 - 3x)};$ 10) $\lim_{x \to 0} \frac{x^4 - 7x^2 - 4x - 9}{2x^4 - 7x - 112};$

Задача 5.

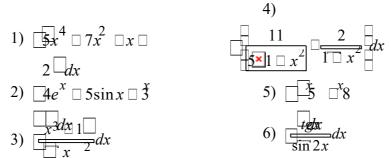
Найти следующие пределы, используя правило Лопиталя.

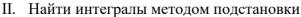
1)
$$\lim_{x = 0} \frac{3x^{2} - 3^{x} - 7}{2x - 9};$$
5) $\lim_{x = 0} \frac{\ln(1 - 4x)}{\sin x};$
9) $\lim_{x = 0} x e^{-x};$
2) $\lim_{x = 0} \frac{4x^{4} - 3x^{2} - 8}{2x^{4} - 5x - 9};$
6) $\lim_{x = 0} \frac{22 - x - 5}{\sin(x - 3)};$
10) $\lim_{x = 0} \frac{1}{x} - \frac{1}{\sin x} = \frac{1}{x};$
3) $\lim_{x = 0} \frac{\sin 4x}{x^{2}};$
7) $\lim_{x = 0} \frac{3x - 6}{x^{3} - 8};$
11) $\lim_{x = 0} \frac{1}{x} = \frac{2}{x};$
4) $\lim_{x = 0} \frac{e^{x} - 1}{arctg4x};$
8) $\lim_{x = 0} \frac{1 - \sin 5x}{2 - (x - 2)};$

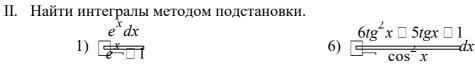
Типовой расчет по математическому анализу (приложение производных)

Вариант 1 Задача 1. Написать уравнение касательной и нормали в точках с абсциссами a,b и c

к кривым:	
1 $y \square 2x^4 \square 3x^2$; $a \square 1, b \square \square 2, c \square 4$;	2. $y \square \sin 2x$; $a \square \square \ $
Задача 2 . Найти наибольшее и наименьш 1. $y \square x^3 \overset{\sqcup}{\circ} x$, $\square \square 3; \overset{\sqcup}{\circ} :$	пее значение функции на данном отрезке:
1. $y \square x^3 \square 0x$, $\square \square 0$;	$2. y \square x \square 2 x, \square 0; 4 \square.$
Задача 3. Найти экстремумы и интервали	ы монотонности функций:
1. $y \square \frac{x^3}{3} \square x^2 \square 3x$;	$4. \ y \square x \stackrel{2}{\sqsubseteq_{x}};$
$2. \ y \square 1 \square 2x^2 \stackrel{x^4}{\rightleftharpoons};$	5. $y \square x \ln x$;.
3. $y \square \frac{1}{1 \square x^2}$;	
Задача 4. Найти асимптоты следующих и	кривых:
1. $y \square \frac{2}{x \square 1}$;	3. $y \square x^2 \square \frac{1}{x}$
2. $y \square \frac{x}{\overline{x} \square 3}$;	4. $y \square xe^{2x}$
Задача 5. Найти точки перегиба и интерв	валы выпуклости функций:
1. $y \square 3x^5 \square 6x \square 7$;	3. $y = \frac{2x^2}{1-x^2}$;
2. $y \square x^3 \square 3x^2$;	1 λ
	4. $\mathcal{Y} \square xe^{\square_x}$.
Задача 6. Построить графики функций:	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2. \ y \ \Box \frac{1}{\overline{x^{2}} \Box 3x \Box 2}.$
Задача 7. Найти частные производные	$\stackrel{\square}{=}$ и $\stackrel{\square}{=}$ следующих функций:
1. $z \square x^3 \square 2y^2 \square 6xy \square 7x \square 8y \square 4$;	$x = 3. z \square \ln \frac{6x \square 7y}{5\overline{x} \square 4y}.$
	3. $z \square \overline{\overline{5x} \square 4y}$.
2. $z \square \cos \square 2x^2 \square 3y^5 \square \underset{v}{\overset{x}{\rightleftharpoons}} tg$	
; Залача 8 Найти в точке 4 гралиент фуд	нкции и производную в направлении
_	перепородную в попроводни
вектора \overline{l} , если:	
1 $z \square y^2 \ln x$; $A(e;1)$; $\overline{l} \square 2\overline{l} \square 3\overline{l}$;	
Задача 9. Найти экстремум $z \square x^2 \square xy \square 2y^2 \square 3x \square 2y \square 2$.	ны функции двух переменных:

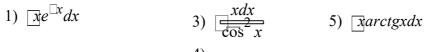

Вариант 2 Задача 1. Написать уравнение касательной и нормали в точках с абсциссами a, b и c


к кривым:	
1 $y \square 2x^3 \square 5x$; $a \square \square 1$, $b \square 2$, $c \square 0$;	2. $y \square \sin 3x$; $a \square \square/9$, $b \square \square 6$, $c \square \square 4$.
Задача 2. Найти наибольшее и наименьи	пее значение функции на данном отрезке:
1. $y \Box x^3 \Box 3x^2 \Box 3x \Box 2$, $\Box \Box 2; 2\Box$. Задача 3. Найти экстремумы и интервал	шее значение функции на данном отрезке: 2. $y = \frac{x}{3} = \frac{3}{x} = \frac{1}{x}$
Задача 3. Найти экстремумы и интервал	ы монотонности функций:
1. $y \square \frac{x^4}{4} \square x^3$;	$4. \ y \ \Box \ 2x \ \Box \frac{1}{x};$
$2. \ y \square \frac{x^3}{3} \square \ x^2;$	$5. \ y \ \Box x^2 e^{\Box x}.$
3. $y \square \frac{x^2 \square 6x \square 13}{\square x \square 3}$;	
Задача 4. Найти асимптоты следующих	кривых:
1. $y = \frac{3}{x = 4}$;	3. $y \square \frac{x^2 \square 10x \square 9}{\square x \square 2}$;
2. $y \square \frac{x}{\overline{x} \square 5}$;	4. $y \square xe^{3x}$.
Задача 5. Найти точки перегиба и интерг	валы выпуклости функций:
1. $y \Box 4x^5 \Box 7x \Box 8$;	x^4
2. $y \square 2x^3 \square 3x^2$;	3. $y = \frac{x^4}{x^3}$;
,	4. $y \square xe^{\square 2x}$.
Задача 6. Построить графики функций:	
$1 y \square 8 \square 2\hat{x} \square x^4;$	$2. \ y \ \Box \frac{x^3}{3 \Box x^2}.$
	$\mathcal{F} = \mathcal{K}$
Задача 7. Найти частные производные =	$\frac{\Box z}{\Box y}$ следующих функций:
1. $z \square x^2 \square 4y^3 \square 5xy \square 8x \square 9y \square 3$;	3. $z \square \arcsin \frac{2x \square y}{5x \square y} \square 2^{5x_2 \square 4y}$.
2. $z \square \sin(2x \square 3y) \square ctg \stackrel{x}{\rightleftharpoons}$;	$5\overline{x} \square y$
y	
Задача 8. Найти в точке A градиент фу вектора \overline{l} , если:	нкции и производную в направлении
1 $z \square x^2 \ln y$; $A(3;\square 1)$; $T \square Z_i \square T_j$;	$2. z \cap \exists i \cap 2v : A(2:3) : \uparrow \cap \exists i \cap \not = i$
Задача 9. Найти экстремун	
$z \square x^2 \square xy \square y^2 \square 9x \square 6y \square 20$	пременных.
z = x = xy = y = 2x = 0y = 20.	


Типовой расчет по математическому анализу (интегрирование)

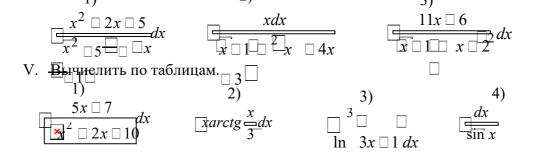
Вариант №1

I.	Найти интегралы,	используя	табличные	формулы и	свойство
	линейности.				

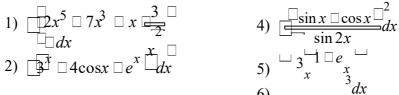


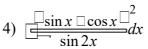
2)
$$\frac{dx}{x \ln x}$$
 7) $\frac{1}{x} \frac{1}{x} \frac{1}{x}$

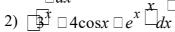
3)
$$xdx$$
 8) $x = 4arctgx$ dx

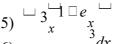

4)
$$\frac{dx}{\sin^2 \Box 7x}$$
9)
$$\frac{1}{\Box x}dx$$

III. Выполнить интегрирование почастям.

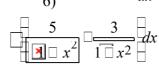

 $\frac{4}{x^2}\sin 3x dx$ 6) $\cos \ln x \, dx$

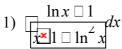

IV. Вычислить интегралы от рациональных дробей.




Вариант №2

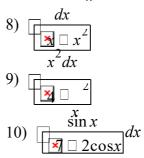
І. Найти интегралы, используя табличные формулы и свойство линейности.





II. Найти интегралы методом подстановки.

6)
$$\frac{2arctgx \ \Box x}{1 \ \Box x^2} dx$$

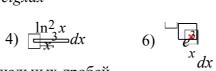

2)
$$\frac{x^2dx}{x^6 - 9}$$

7)
$$\frac{dx}{x^2 \cos^2 \frac{1}{x}}$$

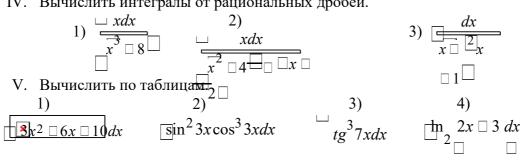
3)
$$\sin^5 x dx$$

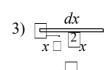
5)
$$\frac{dx}{e^{x} \sin^{2} \frac{1}{e^{x}}}$$

III. Выполнить интегрирование почастям.

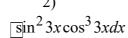

1)
$$\sum e^{\int x} dx$$

xarctgxdx


5) $\sqrt{\sin 3x} dx$


$$2) \frac{x \cos x dx}{\sin^3 x}$$

4)
$$\frac{\ln^2 x}{\ln^2 x} dx$$


IV. Вычислить интегралы от рациональных дробей.

$$1)$$

$$3x^2 \square 6x \square 10 dx$$

$$10^{3}$$

$$\lim_{x \to 0} 2x \square 3 dx$$

5. Учебно-методическое и информационное обеспечение дисциплины

Основная литература

- 1. Березина, Н. А. Высшая математика : учебное пособие / Н. А. Березина. 2-е изд. Саратов : Научная книга, 2019. 158 с. ISBN 978-5-9758-1888-1. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/80978.html Режим доступа: для авторизир. пользователей
- 2. Растопчина, О. М. Высшая математика: учебное пособие / О. М. Растопчина. М.: Московский педагогический государственный университет, 2018. 150 с. ISBN 978-5-4263-0594-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/79053.html Режим доступа: для авторизир. пользователей

Дополнительная литература:

- ▼ 1. Сёмина, Г. М. Высшая математика. Ряды Фурье. Преобразование Фурье: практикум / Г. М. Сёмина, И. В. Данченков. М.: Издательский Дом МИСиС, 2018. 47 с. ISBN 978-5-906846-84-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/78569.html Режим доступа: для авторизир. пользователей
- 2. Растопчина, О. М. Высшая математика : практикум / О. М. Растопчина ; под редакцией А. И. Нижников, Т. Н. Попова. М. : Московский педагогический государственный университет, 2017. 138 с. ISBN 978-5-4263-0534-2. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/72486.html Режим доступа: для авторизир. пользователей
- 3. Магазинников, Л. И. Высшая математика. Дифференциальное исчисление : учебное пособие / Л. И. Магазинников, А. Л. Магазинников. Томск : Томский государственный университет систем управления и радиоэлектроники, 2017. 188 с. ISBN 978-5-4332-0114-9. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/72078.html Режим доступа: для авторизир. пользователей
- 4. Горюшкин, А. П. Математика : учебное пособие / А. П. Горюшкин ; под редакцией М. И. Водинчара. Саратов : Ай Пи Эр Медиа, 2019. 824 с. ISBN 978-5-4486-0735-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/83654.html Режим доступа: для авторизир. пользователей

Периодические издания

- 1. Вестник Липецкого государственного технического университета [Электронный ресурс] Режим доступа: http://www.iprbookshop.ru/59075.html ЭБС «IPRbooks»
- 2. Вестник Российского университета дружбы народов. Серия Математика. Информатика. Физика[Электронный ресурс] Режим доступа: http://www.iprbookshop.ru/32515.html ЭБС «IPRbooks»

Программное обеспечение

■ Microsoft Windows, Microsoft Office

Базы данных, информационно-справочные и поисковые системы, Интернетресурсы

Базы данных (профессиональные базы данных)

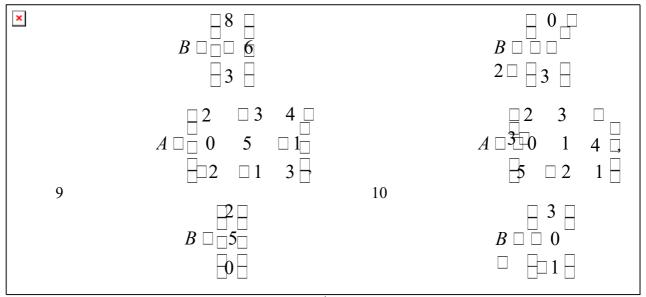
- -База данных веб-технологий http://www.php.su
- -База данных IT специалиста- Режим доступа: http://info-comp.ru/

Информационно-справочные системы

- -Справочно-правовая система «КонсультантПлюс» -http://www.consultant.ru/
- 1С: Библиотека АНО ВО СКСИ

Поисковые системы

- -https://www.yandex.ru/
- -https://www.rambler.ru/
- -https://accounts.google.com/
- -https://www.yahoo.com/
- Электронные образовательные ресурсы
- -Корпорация Майкрософт в сфере образования [Электронный ресурс]— Режим доступа: https://www.microsoft.com/ru-ru/education/default.aspx
- —Электронная библиотечная система «IPRbooks»— Режим доступа: http://www.iprbookshop.ru/


6. Практические занятияпо дисциплине

Тема занятий «Определители. Системы линейных уравнений. Матрицы».

Цель занятия: Познакомить студентов с основами линейной алгебры. Научить вычислять определители различных порядков, производить действия над матрицами и применять полученные навыки для решения систем линейных алгебраических уравнений.

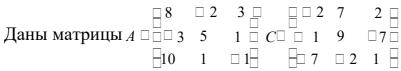
 ${\bf 3}{\bf адания}$ ${\bf 3}{\bf aданиe}$ 1. Даны матрицы A
иB. Найти $C \ \square \ 2 \ ^2 \ \square \ 3 \ ^{\!\!\!\!A^{\,1}} \ \square \ 2 \ \square \, E$,
 $D \ ^{\!\!\!\!\Box} \ \ A \ ^{\!\!\!\Box} \ ^T\!\! B$

х · № варианта	Матрицы A,B	№ варианта	Матрицы A,B
1	$ \begin{array}{c cccc} & & & & & & & & \\ & 1 & 2 & 0 & & & \\ & 1 & 4 & 1 & & \\ & 2 & 3 & 1 & & \\ & 3 & 1 & & & \\ & B & 0 & 0 & & \\ & 5 & 0 & & & \\ \end{array} $	2	$ \begin{array}{c cccc} & 2 & 1 & 0 \\ & A & 3 & 1 & 1 \\ & 2 & 0 & 1 & 2 \\ & & & 3 & \\ & & & 3 & \\ & & & & 1 & \\ & & & & 1 & \\ \end{array} $
3	$A \square \square 2 \qquad 3 \qquad 1 \square$ $\square \square 1 \qquad 0 \qquad 3 \square$ $B \square \square \square 5 \square$ $\square 2 \qquad \square$	4	$ \begin{array}{c cccc} & 3 & 1 & 0 & \\ & A & 0 & 0 & 2 & 5 & \\ \hline & 1 & 0 & 0 & 1 & \\ & B & 0 & \\ \hline & 2 & 3 & 1 & \\ \end{array} $
5	$A \square \square 0 \square 3 2 \square \square$ $\square 0 \square 3 2 \square$ $\square 1 0 1 \square$ $B \square \square 2 \square$ $\square 10 \square$	6	$ \begin{array}{c ccccc} & 2 & 1 & 4 \\ A & & & 1 & 0 \\ 3 & 5 & 1 & 0 \end{array} $ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Задание 2. Найти ранг матрицы A, используя метод нулей и единиц. Указать базисный минор.

х № варианта	Матрица $\it A$	№ варианта	Матрица A
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Задание 3. Проверить совместность системы уравнений, в случае совместности решить ее: а) по формулам Крамера; б) с помощью обратной матрицы (матричным методом); в) методом Гаусса.

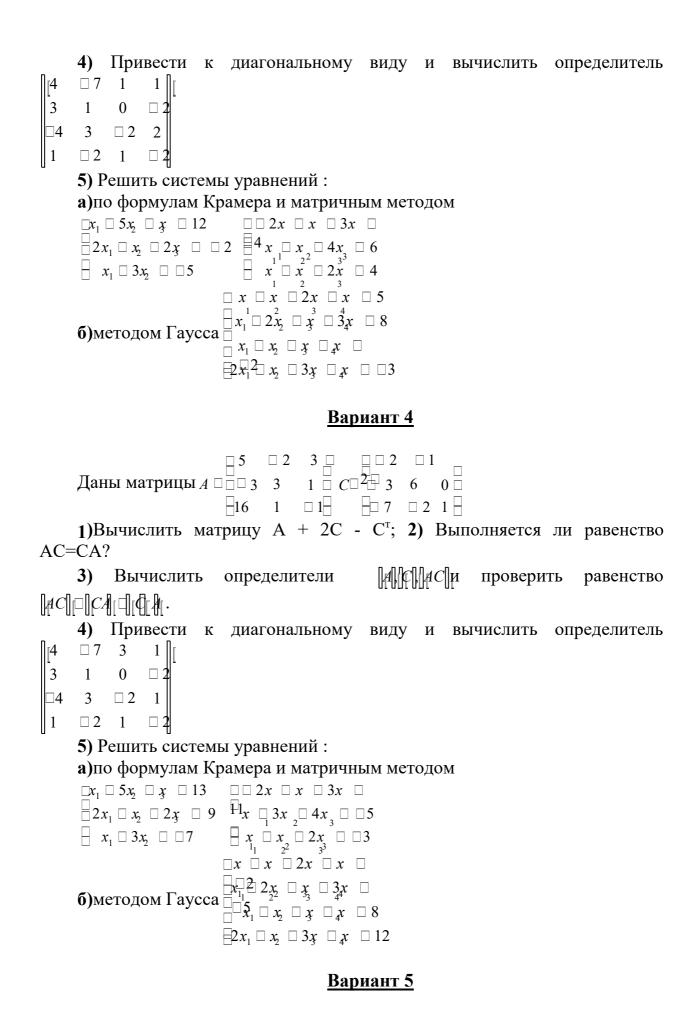

x №	Система линейных	№	Система линейных
варианта	уравнений $\Box 7x_1 \Box 8x_2 \Box \Box 6,$	варианта	уравнений $\Box x \Box 2x \Box 3x \Box 5$,
1		2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	$ \Box 2x_1 \Box x_2 \Box x_3 \Box 3, $ $ \Box x_1 \Box 3x_2 \Box 2x_3 \Box \Box 1, $ $ \Box x_1 \Box x_2 \Box 5. $	4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5	$ \begin{array}{ccccc} $	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	

Задание 4. Найти собственные векторы и собственные значения матрицы A.

<u>×</u> №	Матрица A	$\mathcal{N}_{\underline{o}}$	Матрица А
варианта	Матрица А	варианта	матрица А

1	$ \begin{array}{ccccc} $	2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3	$ \begin{array}{ccccc} $	4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	$ \begin{array}{ccccc} $	8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Вариант 1

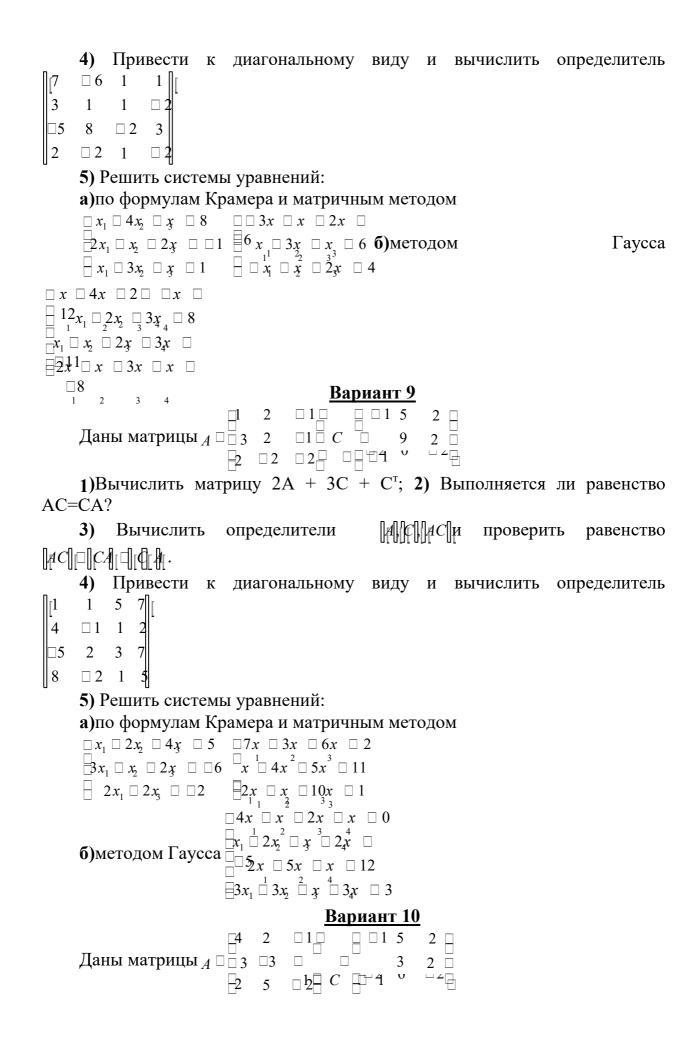


- **1)**Вычислить матрицу $A + 2C 17C^{T}$;
- 2) Выполняется ли равенство АС=СА?
- 3) Вычислить определители [A][C][AC][U][A
 - 4) Привести к диагональному виду и вычислить определитель

$$\begin{bmatrix}
5 & \Box & 7 & 1 & 3 \\
3 & 1 & \Box & 2 & \Box & 2 \\
\Box & 4 & 3 & 2 & 2 \\
1 & \Box & 2 & 1 & \Box & 2
\end{bmatrix}$$

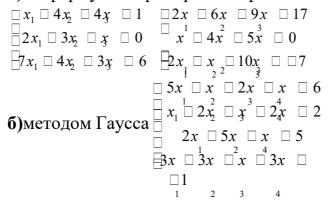
- 5) Решить системы уравнений:
- а)по формулам Крамера и матричным методом

$\Box x_1 \Box 3x_2 \Box 3x_3$	\Box 7 \Box \Box 2.	$x \square x \square 2x$			
$\Box 2x_1 \Box x_2 \Box 2x_3$	\Box 10 $\frac{3}{2}$ x_1	$\Box x_{2} \Box x_{3} \Box 3$	б) методом		Гаусса
	$\exists 2x$	$\Box x \Box 2x \Box$	3		
$\Box x \Box x \Box 2x \Box x$	\square 0	2 3			
	□ 8				
$\exists 4x \ \Box x \ \Box x \ \Box x \ \Box$	10				
	□ 4				
		Bap	<u>иант 2</u>		
	□4 □	□ 2 3 □		2	
Даны матриц	[Ы _А □□□ 3 □ □10	$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, C \Box$	2 0 1 2 0 7 0 2 1 0 2 1 0 1 0 2 1 0 1 0 2 1 1 0 1 1 0 1 1 1 1		
1) Вычислить				_	
2) Выполняет	гся ли равен	іство АС=С	CA?		
3) Вычисли	ить опредо	елители	A, C , A	проверить	равенство
4) Привести	и к диаго	нальному	виду и вы	ічислить оі	пределитель
$ \begin{bmatrix} $					
4 1 2 2					
$\begin{bmatrix} 5 & 6 & 7 & 2 \\ 0 & -3 & 1 & -3 \end{bmatrix}$					
		v			
5) Решить си					
а) по формула					
		$\exists x \ \Box x \ \Box x \ \Box x$	⊔ б) метолом		Гаусса
$ \begin{array}{c cccc} & x & x & 3x & 3x \\ \hline 2_1 & 3_1 & 2_2 & 2_3 & 3x \\ \hline x_1 & 2x_2 & 4x \end{array} $		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1		1 ayeea
$\square \square 3x \square x \square 2x \square x$	¢ □	2 3			
\Box 7 $_{1}x_{1} \Box_{2}2x_{2} \Box_{3}x \Box_{4}$	3				
\Box $4x$ \Box x \Box $2x$ \Box x	□ 6				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	□ 6				
		Bap	<u>иант 3</u>		
Даны матриц	□ 7				
Даны матриц	(Ы А □ □ □ З	$5 \qquad 1 \stackrel{\square}{=} C^{\square}$	2 1 6 0		
			7 021		
1) Вычислить AC=CA?	матрицу :	5A + 3C -	- С ^т ; 2) Вып	олняется ли	и равенство
3) Вычисл	ить опред	делители	[А],[С],[АС]и	проверить	равенство


	Задача 1. Даны матрицы А □□□ 2 2 1 2 □ 5 □ 1 2 □ 5 □ 1 2 □ □ 5 □ 1 2 □ □ □ 0
۱ <i>۲</i> -	1) Вычислить матрицу $6A + 2C - C^{T}$; 2) Выполняется ли равенство $=CA$?
10	
. ~N	3) Вычислить определители [А]СДАСДИ проверить равенство
AC[
-1	4) Привести к диагональному виду и вычислить определитель
3 ¬1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1	□ 2 1 □ 2 5. P
	5) Решить системы уравнений:
	а) по формулам Крамера и матричным методом
	$\begin{bmatrix} 1 & 1 & 1 & 2 & 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 3 & 1 & 1 & 1 \end{bmatrix}$
	б)методом Гаусса
	$\exists 2x_1 \Box x_2 \Box 3x_3 \Box x \Box 7$
	Вариант 6
	$\sqcap 6 \square \ 3 2 \ \square \square \ 3 \square \ 1 2 \ \square$
	Даны матрицы $A \square \square \square 2$ 2 1 2 1 2 1 2 1 3 1 1 2 1 3 1 1 2 1 3 1 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1)Вычислить матрицу $A + 2C - 3C^{T}$;
	2) Выполняется ли равенство АС=СА?
	3) Вычислить определители [А]СДАС и проверить равенство
AC	
I U	4) Привести к диагональному виду и вычислить определитель
2	\Box 6 9 1 \Vert
4	$2 1 \Box 2$
□5	$3 1 \Box \ 2$
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Ш
	5) Решить системы уравнений:
	5) Решить системы уравнений : a) по формулам Крамера и матричным методом $\Box x_1 \Box 5x_2 \Box x \Box \Box 7 \Box \Box 2x \Box x \Box 3x \Box$
	5) Решить системы уравнений : а)по формулам Крамера и матричным методом

б) методом Гаусса	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	□ 12	
	3 □ 3 2 □ □□ 2 1 1 □ C□ □15 0 □ 2 □ грицу A + 5C -	□ 3 □ 1 2 □ □ □ 3 □ 3 5 □ □ □ 7 □ 2 1 □ □ 7 □ 7 □ 2 1 □ □ 1 □ □ 1 □ □ 1 □ □ 1 □ 1 □ 1 □	ся ли равенство
AC=CA?		,	-
3) Вычислить	определители	[A][C][AC]и провер	рить равенство
$ \begin{bmatrix} 2 & \Box & 6 & 1 & 1 \\ 3 & 8 & 1 & \Box & 2 \\ \Box & 5 & 3 & \Box & 2 & 1 \\ 2 & \Box & 2 & 1 & \Box & 2 \end{bmatrix} $ 5) Решить систем а) по формулам К $ \Box x_1 \Box & 5x_2 \Box & x \Box & 8 $ $ \Box 2x_1 \Box & x_2 \Box & 2x \Box & 1 $ $ \Box x_1 \Box & 3x_2 \Box & x \Box & 0 $		3 □ 13 □ 11	ь определитель

Вариант 8


$\square 9$	\square 3	2 📮	□ 3	$\Box 1$	2 🗆
Даны матрицы $A \square \square \square 2$					
- 15	0	\Box 2	 7	\square 2	$_1$

- 1)Вычислить матрицу $A + 5C 2C^{T}$; 2) Выполняется ли равенство AC=CA?
- 3) Вычислить определители AC = CA = CA = CA

1)Вычислить матрицу 4А - С + 6С^т; 2) Выполняется ли равенство АС=СА?

3) Вычислить определители разенство разенс

Методические указания по выполнению заданий

Для выполнения заданий необходимо изучить лекции 1-4. При этом следует учитывать, что для решения СЛАУ необходимо умение вычислять определители и выполнять элементарные преобразования над матрицами. В связи с этим, не рекомендуется начинать решение с задания 3 или 4.

Практическое занятие Тема занятия «Линейное векторное пространство»

Цель занятия: Познакомить студентов с основами векторной алгебры. Научить вычислять вычислить скалярное произведение векторов, находить модуль векторного произведения, вычислить смешанное произведение трёх векторов.

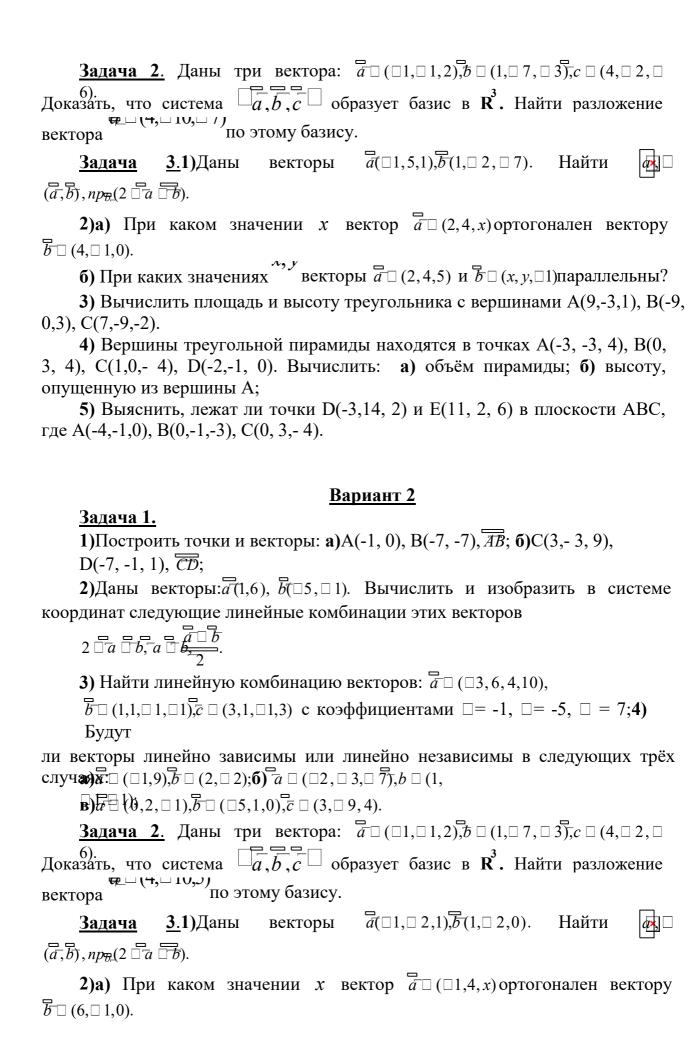
Задание

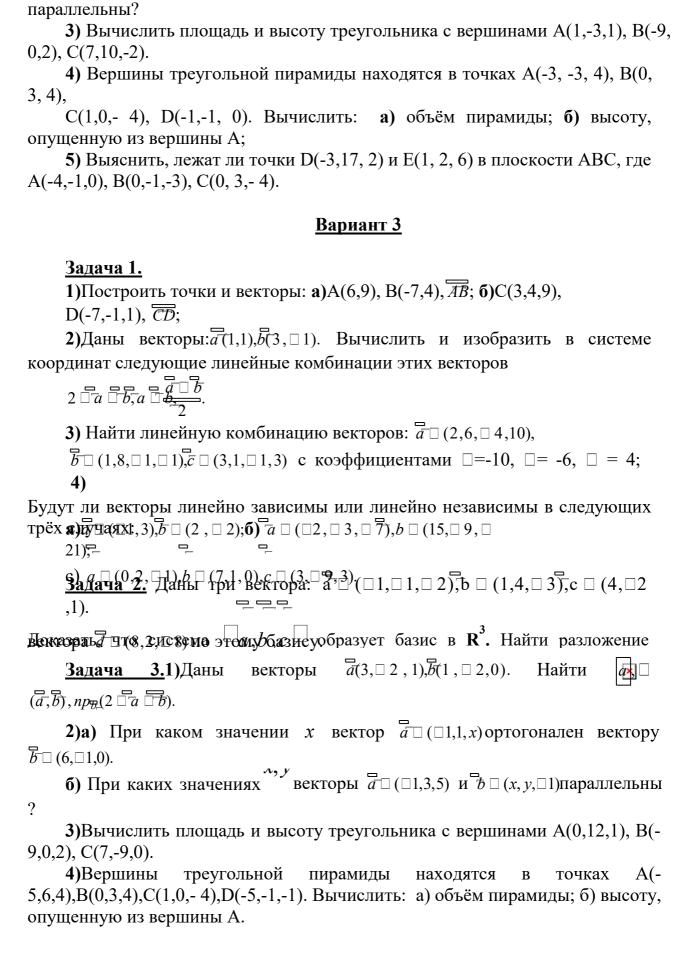
Даны векторы \overline{a} , \overline{b} , \overline{c} . Необходимо: а) вычислить скалярное произведение векторов $2\overline{a}$, $9\overline{b}$; б) найти модуль векторного произведения $3\overline{a}$ и \Box $5\overline{c}$; в) вычислить смешанное произведение трёх векторов $4\overline{a}$, \overline{b} , \overline{c} ; г) проверить будут ли коллинеарными или ортогональными два вектора \overline{a} , \overline{c} ; д) проверить будут ли компланарны три вектора $7\overline{a}$, $5\overline{b}$, \Box \overline{c} .

× No	Вектор	Вектор	Вектор
варианта	$\overline{a} \square a \overline{b} \square a \overline{j} \square a \overline{k}$	$\overline{b} \Box b \overline{b} \Box b \overline{b} \Box b \overline{b} \overline{b} \overline{b} $	$ \overline{c} \square q \overline{l} \square \underline{e} \overline{j} \square \underline{e} \overline{k} $
1	$a \square i j k$	$b \Box j \Box 4k$	$c \square 5i \square 2j \square 3k$
2	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$b \Box i \Box 2j \Box 7k$	$c \square 3i \square 6j \square 21k$
3	$a \square 2i \square 4j \square 2k$		$c \square 3i \square 5j \square 7k$
4	$a \square \square 7i \square 2k$	$ \begin{array}{ccc} b & 7i & 3k \\ b & 2i & 6j & 4k \end{array} $	$c \square i \square 3j \square 2k$
5	$a \square \square 4i \square 2j \square k$	$\begin{bmatrix} \Box & \Box & \Box \\ b & 3i & 5j & 2k \end{bmatrix}$	$c \Box j \Box 5k$
6	$a \square 3 \square 2j \square k$	$b \square 2j \square 3k$	$c \square \square 3i \square 2j \square k$
7	$a \Box \overset{i}{4i} \Box j \Box 3k$	$b \square 2i \square 3j \square 5k$	$c \square 7i \square 2j \square 4k$
8	$a \Box 4i \Box 2j \Box 3k$	$egin{array}{ccc} \Box & \Box \ b & 2i & k \end{array}$	$c \square \square 12i \square 6j \square 9k$
9	$a \square \square i \square 5k$	$b \square \square 3i \square 2j \square 2k$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$b \square 9i \square 2 \square 6j \square 9$	$\begin{bmatrix} \square & \square \\ c & i & 8k \end{bmatrix}$

Вариант 1

Задача 1.


- **1)** Построить точки и векторы: **a)**A(6, 0), B(-7, 4), \overline{AB} ; **б)** C(3,0, 9), D(-7,-1, 1), \overline{CD} ;
- **2)** Даны векторы: $\overline{a}(1, \Box 4)$, $\overline{b}(3, \Box 1)$. Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов


$$2 \Box a \Box b, a \Box b$$

- **3)** Найти линейную комбинацию векторов: $\overline{a} \square (\square 3, 6, 4, 10)$, $\overline{b} \square (1,1,8,\square 1), \overline{c} \square (3,1,\square 1,3)$ с коэффициентами $\square = -10$, $\square = -5$, $\square = 4$;
- **4)** Будут ли векторы линейно зависимы или линейно независимы в следующих трёх случаях:

a)
$$\overline{a}$$
 \Box (\Box 1,9), \overline{b} \Box (2, \Box 2);**6**) \overline{a} \Box (\Box 2, \Box 2, \Box 2 \overline{b}), b \Box (1, \Box 1);

B)
$$a \Box (0,2,\Box 1), b \Box (\Box 5,2,0), c \Box (3,\Box 9,4).$$

значениях векторы $\overline{a} \square (\square 1, 4, 5)$ и $\overline{b} \square (x, y, \square 1)$

б) При

каких

5) Выяснить, лежат ли точки D(-3,17,0) и E(0,2,6) в плоскости ABC, где A(-4,-1,0), B(-2,-1,1), C(0,9,-4).

Вариант 4

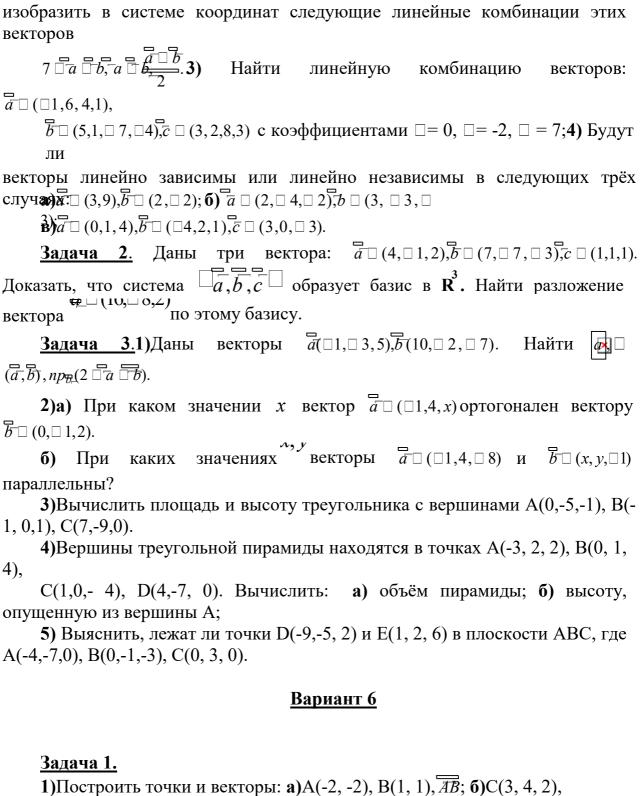
Задача 1.

- **1**)Построить точки и векторы: **a**)A(-1, -2), B(-7, 1), \overline{AB} ; **б**)C(3,-4, 2), D(-8, -1, 2), \overline{CD} ;
- **2)**Даны векторы: $\overline{a}(1,\Box 11)$, $\overline{b}(\Box 6,\Box 1)$. Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов

$$2 \overline{a} \overline{b}, \overline{a} \overline{b} \overline{b}$$

- **3)** Найти линейную комбинацию векторов: $\overline{a} \Box (\Box 1, 6, 4, 1)$,
- \overline{b} \square (5,1, \square 1, \square 4), \overline{c} \square (3,1,8,3) с коэффициентами \square = 0, \square = -2, \square = 7;**4)** Будут

векторы линейно зависимы или линейно независимы в следующих трёх случ**а**) \overline{a} : $\Box (\Box 1,9),\overline{b} \Box (2,\Box 2);\mathbf{6})$ $\overline{a} \Box (2,\Box 2,\Box 2),\overline{b} \Box (\Box 3,$


- **B**) \overline{b} $\overline{$
- <u>Задача 2.</u> Даны три вектора: $\overline{a} = (4, -1, 2), \overline{b} = (7, -7, -3), \overline{c} = (4, -3, -3, -6).$ Доказать, что система $\overline{a}, \overline{b}, \overline{c} = \overline{a}$ образует базис в \mathbf{R}^3 . Найти разложение вектора по этому базису.

<u>Задача 3.1)</u>Даны векторы $\overline{a}(\Box 1, \Box 12, 1), \overline{b}(20, \Box 2, \Box 7)$. Найти $(\overline{a}, \overline{b}), np_{\overline{b}}(2 \Box \overline{a} \Box \overline{b})$.

- **2)а)** При каком значении x вектор $\overline{a} \square (3,4,x)$ ортогонален вектору $\overline{b} \square (4,\square 1,1)$.
 - **б)** При каких значениях векторы $\vec{a} \Box (3,4,5)$ и $\vec{b} \Box (x,y,\Box 1)$ параллельны?
- **3)**Вычислить площадь и высоту треугольника с вершинами A(0,-3,1), B(-1,0,3), C(7,-9,0).
- **4)**Вершины треугольной пирамиды находятся в точках A(-3, 1, 4), B(0, 3, 4),
- $C(1,0,-4),\ D(3,-1,\ 0).$ Вычислить: **a)** объём пирамиды; **б)** высоту, опущенную из вершины A;
- **5)** Выяснить, лежат ли точки D(-3,4, 2) и E(1, 2, 6) в плоскости ABC, где A(-4,-7,0), B(0,-1,-9), C(0, 3,-5).

Вариант 5

<u>Задача 1.</u>1)Построить точки и векторы: а) A(-1, -2), B(-1, 1), \overline{AB} ; б)C(3, -4, 2),

D(-8, -1, 5), \overline{CD} ; 2)Даны векторы: \overline{a} (1, \square 11), \overline{b} (6, \square 1). Вычислить и

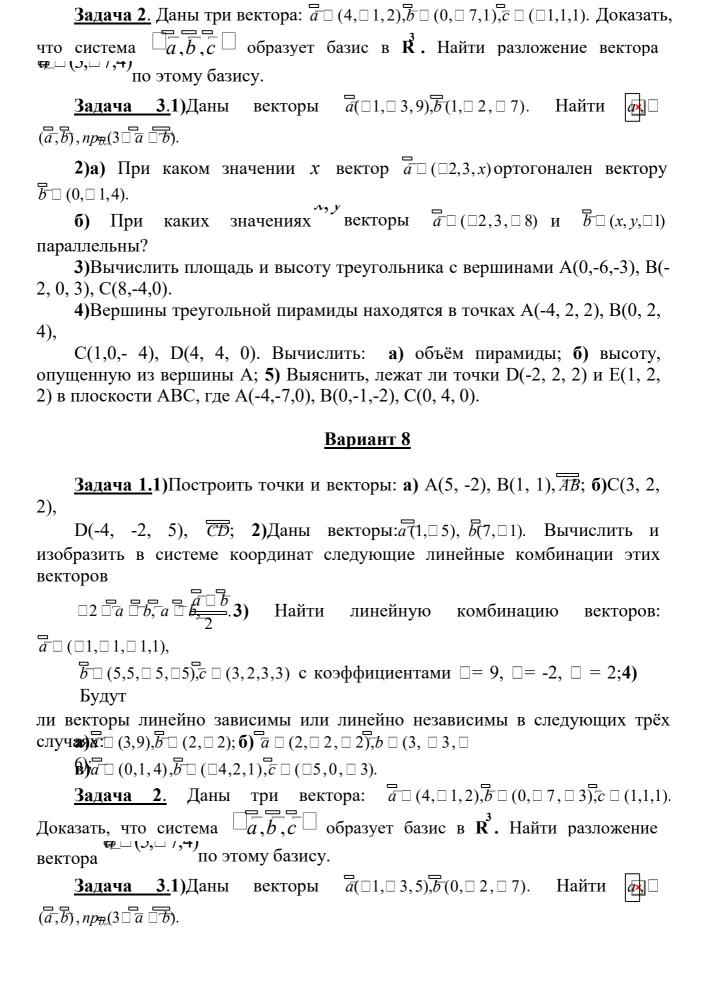
1)Построить точки и векторы: **a)**A(-2, -2), B(1, 1), \overline{AB} ; **б)**C(3, 4, 2), D(-8, 7, 5), \overline{CD} ;

2)Даны векторы: $\overline{a}(6,\Box 1)$, $\overline{b}(6,\Box 1)$. Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов

$$2 \Box \overline{a} \Box \overline{b}, \overline{a} \Box \overline{b}$$

3) Найти линейную комбинацию векторов: $\overline{a} \square (\square 1, \square 1, \square 1, 1)$,

<u>Задача 2.</u> Даны три вектора: $\overline{a} \square (4, \square 1, 2), \overline{b} \square (7, \square 7, \square 3), \overline{c} \square (1, 1, 1).$
Доказать, что система $\overline{a}, \overline{b}, \overline{c}$ образует базис в \mathbf{R}^3 . Найти разложение
вектора по этому базису.
<u>Задача 3.</u> 1)Даны векторы \overline{a} (□1,□1,5), \overline{b} (13,□2,□7). Найти \overline{a} ,□
$(\overline{a}, \overline{b}), np_{\overline{b}}(2 \square \overline{a} \square \overline{b}).$
2)а) При каком значении x вектор $\overline{a} \square (\square 1, 4, x)$ ортогонален вектору
$\overline{b} \square (0,\square 1,2).$
б) При каких значениях векторы $\overline{a} \square (\square 1, 4, \square 8)$ и $\overline{b} \square (x, y, \square 1)$
параллельны?
3) Вычислить площадь и высоту треугольника с вершинами $A(0,-6,-1)$, $B(-1,0,11)$, $C(7,-9,0)$.
4) Вершины треугольной пирамиды находятся в точках A(-3, 1, 2), B(0, 1,
4),
C(1,0,-4), $D(4,-6,0)$. Вычислить: a) объём пирамиды; б) высоту,
опущенную из вершины A; 5) Выяснить, лежат ли точки D(-8,-5, 2) и E(1, 3, 6) в плоскости ABC, где
A(-4,-7,0), B(0,-1,-9), C(0, 3, 0).
Вариант 7
<u>Задача 1.1)</u> Построить точки и векторы: a) $A(8, -2)$, $B(1, 1)$, \overline{AB} ; б) $C(3, 4, -2)$
<u>Задача 1.1</u>)Построить точки и векторы: a) A(8, -2), B(1, 1), \overline{AB} ; б) C(3, 4, 2), D(-4, 7, 5), \overline{CD} ;
Задача 1.1)Построить точки и векторы: a) A(8, -2), B(1, 1), \overline{AB} ; б) C(3, 4, 2), D(-4, 7, 5), \overline{CD} ; 2) Даны векторы: \overline{a} (6, □ 5), \overline{b} (6, □ 1). Вычислить и изобразить в системе
Задача 1.1)Построить точки и векторы: a) A(8, -2), B(1, 1), \overline{AB} ; 6) C(3, 4, 2), D(-4, 7, 5), \overline{CD} ; 2) Даны векторы: \overline{a} (6, □ 5), \overline{b} (6, □ 1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов
Задача 1.1)Построить точки и векторы: a) A(8, -2), B(1, 1), \overline{AB} ; б) C(3, 4, 2), D(-4, 7, 5), \overline{CD} ; 2) Даны векторы: \overline{a} (6, □ 5), \overline{b} (6, □ 1). Вычислить и изобразить в системе
Задача 1.1)Построить точки и векторы: a) A(8, -2), B(1, 1), \overline{AB} ; 6) C(3, 4, 2), D(-4, 7, 5), \overline{CD} ; 2) Даны векторы: \overline{a} (6, □ 5), \overline{b} (6, □ 1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов 3 □ \overline{a} □ \overline{b} , \overline{a} □ \overline{b} .
Задача 1.1) Построить точки и векторы: а) A(8, -2), B(1, 1), AB; б)C(3, 4, 2), D(-4, 7, 5), CD; 2) Даны векторы: a (6, 5), b (6, 1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов 3 a b, a b, a b. 3 Hайти линейную комбинацию векторов: a (1, 1, 1, 1), b (5,5, 7, 5), c (3,2,8,3) с коэффициентами = 8, = -2, = 4); Будут ли векторы линейно зависимы или линейно независимы в
Задача 1.1)Построить точки и векторы: а) A(8, -2), B(1, 1), \$\overline{AB}\$; 6)C(3, 4, 2), D(-4, 7, 5), \$\overline{CD}\$; 2)Даны векторы: \$\overline{a}\$(6,□5), \$\overline{b}\$(6,□1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов 3 □ \$\overline{a}\$ □ \$\overline{b}\$, \$\overline{a}\$ □ \$\overline{b}\$. 3) Найти линейную комбинацию векторов: \$\overline{a}\$ □ (□1,□1,□1,1), \$\overline{b}\$ □ (5,5,□7,□5)\$, \$\overline{c}\$ □ (3,2,8,3) с коэффициентами □= 8, □= -2, □ = 4); Будут ли векторы линейно зависимы или линейно независимы в следующих трёх случаях:
Задача 1.1) Построить точки и векторы: а) A(8, -2), B(1, 1), AB; 6)C(3, 4, 2), D(-4, 7, 5), CD; 2) Даны векторы: a (6,□5), b (6,□1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов 3 □ a □ b, a □ b 2. 3) Найти линейную комбинацию векторов: a □ (□1,□1,□1,1), b □ (5,5,□7,□5), □ (3,2,8,3) с коэффициентами □= 8, □= -2, □ = 4); Будут ли векторы линейно зависимы или линейно независимы в следующих трёх случаях: a) a □ (0,9), b □ (2,□2); 6) a □ (3,□3,□3), b □ (□3,□3,□
Задача 1.1)Построить точки и векторы: а) A(8, -2), B(1, 1), \$\overline{AB}\$; 6)C(3, 4, 2), D(-4, 7, 5), \$\overline{CD}\$; 2)Даны векторы: \$\overline{a}\$(6,□5), \$\overline{b}\$(6,□1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов 3 □ \$\overline{a}\$ □ \$\overline{b}\$, \$\overline{a}\$ □ \$\overline{b}\$. 3) Найти линейную комбинацию векторов: \$\overline{a}\$ □ (□1,□1,□1,1), \$\overline{b}\$ □ (5,5,□7,□5)\$, \$\overline{c}\$ □ (3,2,8,3) с коэффициентами □= 8, □= -2, □ = 4); Будут ли векторы линейно зависимы или линейно независимы в следующих трёх случаях:
Задача 1.1) Построить точки и векторы: а) A(8, -2), B(1, 1), AB; 6)C(3, 4, 2), D(-4, 7, 5), CD; 2) Даны векторы: a (6,□5), b (6,□1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов 3 □ a □ b, a □ b 2. 3) Найти линейную комбинацию векторов: a □ (□1,□1,□1,1), b □ (5,5,□7,□5), □ (3,2,8,3) с коэффициентами □= 8, □= -2, □ = 4); Будут ли векторы линейно зависимы или линейно независимы в следующих трёх случаях: a) a □ (0,9), b □ (2,□2); 6) a □ (3,□3,□3), b □ (□3,□3,□
Задача 1.1) Построить точки и векторы: а) A(8, -2), B(1, 1), AB; 6)C(3, 4, 2), D(-4, 7, 5), CD; 2) Даны векторы: a (6,□5), b (6,□1). Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов 3 □ a □ b, a □ b 2 2. 3) Найти линейную комбинацию векторов: a □ (□1,□1,□1,1), b □ (5,5,□7,□5), □ (3,2,8,3) с коэффициентами □= 8, □= -2, □ = 4); Будут ли векторы линейно зависимы или линейно независимы в следующих трёх случаях: a) a □ (0,9), b □ (2,□2); 6) a □ (3,□3,□3), b □ (□3,□3,□


 \overline{b} \square (5,1, \square 7, \square 4), \overline{c} \square (3,2,8,3) с коэффициентами \square = 8, \square = -2, \square =

 $\mathbf{a})\overline{a} \square (7,9),\overline{b} \square (2,\square 2);\mathbf{6})\overline{a} \square (2,\square 2,\square 2),\overline{b} \square (3,\square 3,\square 3)$

 \overline{a} \Box $(0,5,4), \overline{b}$ \Box $(\Box 4,2,0), \overline{c}$ \Box (3,0,4).

следующих трёх случаях:

4); Будут ли векторы линейно зависимы или линейно независимы в

2)а) При каком значении x вектор $\overline{a} \square (\square 2,4,x)$ ортогонален вектору
$\overline{b}\Box$ (0, \Box 1,3). б) При каких значениях векторы $\overline{a}\Box$ (\Box 2,4, \Box 8) и $\overline{b}\Box$ (x,y,\Box 1)
параллельны?
3) Вычислить площадь и высоту треугольника с вершинами A(0,-5,-2), B(-
1, 0, 2), C(7,-3,0).
4) Вершины треугольной пирамиды находятся в точках $A(-3, 1, 2)$, $B(0, 2, 4)$,
C(1,0,-4), $D(4, 3, 0)$. Вычислить: а) объём пирамиды; б) высоту,
опущенную из вершины А;
5) Выяснить, лежат ли точки D(-2,-5, 2) и E(1, 2, 2) в плоскости ABC, где
A(-4,-7,0), B(0,-1,-2), C(0,3,0).
Вариант 9
<u>Задача 1.1</u>)Построить точки и векторы: a) $A(9, -2)$, $B(1, 1)$, \overline{AB} ; б) $C(3, 1, -2)$
1),
$D(-4, -2, 5), \overline{CD};$
2) Даны векторы: $\overline{a}(1, \Box 5), \ \overline{b}(6, \Box 1)$. Вычислить и изобразить в системе
координат следующие линейные комбинации этих векторов
$3 \Box \overline{a} \Box \overline{b}, \overline{a} \Box \overline{b}$
3) Найти линейную комбинацию векторов: $\overline{a} \Box (\Box 1, \Box 1, \Box 1, 1)$,
\overline{b} \Box (5,4, \Box 5, \Box 4), \overline{c} \Box (3,2,3,3) с коэффициентами \Box = 3, \Box = -2, \Box = 2;4)
Будут
ли векторы линейно зависимы или линейно независимы в следующих трёх
случар \overline{a} : \square (2,1), \overline{b} \square (\square 4, \square 2); $\overline{\bf{6}}$ $\overline{}$ $\overline{}$ \square (\square 1,1,1), $\overline{}$, b \square (\square 2,
$(\Box 1,1,1), \overline{b} \Box (\Box 2,2,\Box 1), \overline{c} \Box (2,\Box 1,3).$
<u>Задача 2.</u> Даны три вектора: $\overline{a} \square (2,2,3), \overline{b} \square (0,1,1), \overline{c} \square (2,1,1)$. Доказать, что
<u>задача 2.</u> даны три вектора. $u = (2,2,3), b = (0,1,1), c = (2,1,1).$ доказать, что система a, b, c образует базис в a, b . Найти разложение вектора
этому базису.
<u>Задача</u> <u>3.1)</u> Даны векторы $\overline{a}(2,1,0),\overline{b}(0,\square 2,1)$. Найти
2)а) При каком значении x вектор $\overline{a} \square (2, \square 6, x)$ ортогонален вектору
$\overline{b} \square (\square 1, 3, 4).$
б) При каких значениях векторы $\overline{a} \square (2, \square 6, 1)$ и $\overline{b} \square (x, y, \square 1)$
параллельны?
3) Вычислить площадь и высоту треугольника с вершинами A(7, 3, 4), B(1,
0, 6), C(4, 5, 7).

- **4)**Вершины треугольной пирамиды находятся в точках A(4, 6, 5), B(6, 9, 4),
- C(2, 10, 10), D(7, 5, 9). Вычислить: **а)** объём пирамиды; **б)** высоту, опущенную из вершины A;
- **5)** Выяснить, лежат ли точки D(1, 0, 1) и E(0, 1, -3) в плоскости ABC, где A(5,-3,0), B(-4, 3, 3), C(-4, 2,-4).

Вариант 10

Задача 1.

- **1)**Построить точки и векторы: **a)** A(1, 2), B(2, 8), \overline{AB} ; **6)**C(1, 0, 2), D(3, -1, 0), \overline{CD} ;
- **2)**Даны векторы: $\overline{a}(\Box 1,2)$, $\overline{b}(3,4)$. Вычислить и изобразить в системе координат следующие линейные комбинации этих векторов
- 2 \boxed{a} \boxed{b} , \boxed{a} \boxed{b} \boxed{a} \boxed{b} \boxed{a} \boxed{b} \boxed{a} \boxed{b} \boxed{a} \boxed

 \overline{b} \square (\square 1,3,0,8), \overline{c} \square (7,5, \square 3,0) с коэффициентами \square = 3, \square = 4, \square = -2;4) Будут

ли векторы линейно зависимы или линейно независимы в следующих трёх случарж $(0,7), \overline{b} \cap (2, \square 2); \overline{\mathbf{0}})$ $\overline{a} \cap (6, \square 4, \square 10), \overline{b} \cap (3, \square 2, \square$

 \overline{b}) $\overline{a} \square (0,1,0), \overline{b} \square (\square 7,2,2), \overline{c} \square (\square 5,1,\square 3).$

<u>Задача 2.</u> Даны три вектора: $\overline{a} \square (4, \square 1, 2), \overline{b} \square (0, \square 7, 1), \overline{c} \square (\square 1, 1, 1)$. Доказать, что система $\square \overline{a}, \overline{b}, \overline{c} \square$ образует базис в \mathbf{R}^3 . Найти разложение вектора по этому базису.

<u>Задача 3.1)</u>Даны векторы $\overline{a}(\Box 1,5,9),\overline{b}(3,\Box 2,\Box 7)$. Найти $(\overline{a},\overline{b}),np_{\overline{n}}(2\ \Box \overline{a}\ \overline{\Box b})$.

- **2)а)** При каком значении x вектор $\overline{a} \square (5,3,x)$ ортогонален вектору $\overline{b} \square (0,\square 1,2)$.
- **б)** При каких значениях векторы $\overline{a} \square (5,3,\square 8)$ и $\overline{b} \square (x,y,\square 1)$ параллельны?
- **3)**Вычислить площадь и высоту треугольника с вершинами A(0,-8,-3), B(-2,0,3), C(8,-4,1).
- **4)**Вершины треугольной пирамиды находятся в точках A(-4, -2, 5), B(0, 1, 4),
- C(1, 0, 4), D(4, -4, 0). Вычислить: **a)** объём пирамиды; **б)** высоту, опущенную из вершины A;
- **5)** Выяснить, лежат ли точки D(-2, 3,2) и E(-1, 2, 2) в плоскости ABC, где A(-4,-7,0), B(0,-1, 3), C(0, 4, 5).

Методические указания по выполнению заданий

Для выполнения предложенных заданий на практических занятиях необходимо изучить материал лекции по данной теме. Основные определения и теоремы. При этом следует учитывать, что предложенный в лекции материал частично опирается на некоторые разделы из школьного курса математики, которые также желательно было бы повторить для хорошего и полного усвоения дисциплины.

Практическое занятие

Тема занятия «Элементы аналитической геометрии»

Цель занятия: познакомить студентов с основными понятиями аналитической геометрии на плоскости и в пространстве. Научить решать типовые задачи.

Задания

Типовая задача 1:

1.1 Уравнение прямой на плоскости.

Даны координаты вершины треугольника АВС найти:

а) медиану AD; б) угол $\square DAC$; в) прямую, перпендикулярную прямой ADи проходящую через точкуC; г) прямую, параллельную прямой AD и проходящую через точку B; д) расстояние от точки B до прямой AC.

] № варианта	Координаты точки $\it A$	Координаты точки \emph{B}	Координаты точки
варианта 1	(0,1)	(1,4)	(-3 <u>C</u> 2)
2	(-1, 1)	(0, 5)	(-4, 1)
3	(2, -1)	(-3, 1)	(1, 5)
4	(0, -2)	(-2, 5)	(0, -1)
5	(-2, 1)	(-5, 4)	(3, -2)
6	(1, 0)	(4, -5)	(2, -3)
7	(1, 1)	(2, -5)	(2, 3)
8	(1, -1)	(-7, 0)	(5, -4)
9	(-1, 1)	(3, -3)	(-5, 1)
10	(2, -3)	(4, -2)	(-2, 4)

1.2 Уравнение прямой в пространстве.

× No	Точка	Точка	Точка	Точка
варианта	$A_1 \square_{\mathfrak{X}}$; \mathfrak{p} ; \mathfrak{p}	$A_2 \square_{\mathbf{x}}$; \mathbf{y} ; \mathbf{z}	$A_3 \square_{\mathfrak{X}}$; \mathfrak{X} ; \mathfrak{Z}	$A_4 \square_{X}$; χ ; χ
1	$\square A_{1}\square 1; 8;$	$\square A_2 \square 5; 6;$	$\square_{4_3}\square_{5;7;}$	
2	$\mathcal{A}_{1} = 10; 9;$	$\stackrel{2}{A_2}\Box 2; 8; 2\Box$	$\stackrel{4}{A_3}\Box 9; 8; 9\Box$	² ⁄ ₄ □7; 10;
3	6□	A_2 $\square 8; 7; 4$ \square	$A_3 \square 5; 10;$	3□
4	$A_1 \square 3; 5; 4 \square$	$A_2 \square 6; 9; 4 \square$	4 □	$A_4 \square 4; 7; 8 \square$
5	$A_1 \square 4; 6; 5 \square$	$A_2 \Box 7; 10;$	$A_3 \square 2; 10;$	$A_4\square 7;5;9\square$
	$A_1 \square 4; 4;$	$2\square$	$10\Box$	$A_4 \square 6; 9; 6 \square$
6	10□	$A_2\square 0;7;1\square$	A_3 $\square 2; 8; 4$ \square	$A_4\Box 1;5;0\Box$
7	$A_1 \square 4; 2; 5 \square$	$A_2\square 5;4;7\square$	$A_3\Box 0;2;7\Box$	$A_4\square 7;3;7\square$
8	$A_1 \square 6; 8; 2 \square$	$A_2\square 9;4;4\square$	A_3 $\square 2; 4; 7$ \square	$A_4 \square 7; 9; 6 \square$
9	$A_1\square 7;5;3\square$	A_2 \square 4; 6; 6 \square	$A_3 \square 4; 5; 7 \square$	$A_4\Box 1; 2; 6\Box$
10	$A_1 \square 6; 1; 1 \square$	A_2 \square 1; \square 1;	$A_3 \square 4; 2; 0 \square$	$A_4 \square 5; 8;$
	$A_1 \square 5; 5; 4 \square$	4 🗆	$A_3 \square 3; 5; 1 \square$	

Задача 2.

Составить уравнение плоскости П, проходящей через точку

$$M(1; 0; -2)$$
 и прямую с уравнением $\frac{x \square 3}{\boxed{1}} \square \underbrace{y \square 2}_{\boxed{2}} \square \underbrace{z \square 1}_{\boxed{1}}$.

Задача 3.

Привести к каноническому виду общие уравнения прямой

$$\square 2x \square 3y \square z \square 1 \square 0$$

Зад ${\bf X}$ ч ${\bf A}$ ${\bf Y} \ \square \ 2z \ \square \ 3 \ \square \ 0$.

Найти расстояние между параллельными прямыми

$$\mathsf{I}_1: \underbrace{\begin{array}{c} x \ \Box \ 2 \\ \hline 2 \end{array} \begin{array}{c} y \ \Box \ 1 \\ \hline \end{array} \begin{array}{c} z \ \Box \ 4 \\ \hline \end{array}}_1 \quad \mathsf{I}_2: \underbrace{\begin{array}{c} x \ \Box \ 2 \\ \hline \end{array} \begin{array}{c} y \ \Box \ 4 \\ \hline \end{array} \begin{array}{c} z \ \Box \ 3 \\ \hline \end{array}}_1.$$

Задача 5.

Составить параметрическое уравнение прямой L , проходящей через точки A(2,0,2) и $B(1,\Box 1,1)$

Задача 6.

Определить, при каком значенииа прямая Определить, при каком значении прямая Определить, при каком значении прямая Определить, при каком значении прямая Определить при каком значении при каком значении прямая Определить при каком значении при каком значении

$$(a+2)x + (a^2-9)y + 3a^2 - 8a + 5 = 0$$

- 1) параллельна оси абсцисс;
- 2) параллельна оси ординат;
- 3) проходит через начало координат.
- В каждом случае написать уравнение прямой.

Задача 7.

 \square Определить, при каких значениях m и n прямая

$$(m+2n-3)x + (2m-n+1)y + 6m + 9 = 0$$

параллельна оси абсцисс и отсекает на оси ординат отрезок, равный – 3 (считая от начала координат). Написать уравнение этой прямой.

Задача 8.

$$(2m-n+5)x + (m+3n-2)y + 2m+7n+19 = 0$$

параллельна оси ординат и отсекает на оси абсцисс отрезок, равный +5 (считая от начала коорди2ат). Написать уравнение этой прямой.

Задача 9.

Доказать, что в следующих случаях две данные прямые пересекаются, и найти точку их пересечения:

1)
$$x + 5y - 35 = 0$$
, $3x + 2y - 27 = 0$;

2)
$$14x - 9y - 24 = 0$$
, $7x - 2y - 17 = 0$

2)
$$14x - 9y - 24 = 0$$
, $7x - 2y - 17 = 0$;
3) $12x + 15y - 8 = 0$, $16x + 9y - 7 = 0$;

4)
$$8x - 33y - 19 = 0$$
, $12x + 55y - 19 = 0$;

5)
$$3x + 5 = 0$$
, $y - 2 = 0$.

Задача 10.

Доказать, что в следующих случаях две данные прямые параллельны:

1)
$$3x + 5y - 4 = 0$$
, $6x + 10y + 7 = 0$;
2) $2x - 4y + 3 = 0$, $x - 2y = 0$;
3) $2x - 1 = 0$, $x + 3 = 0$;

$$6x + 10y + 7 = 0$$

$$2) 2x - 4y + 3 = 0,$$

$$x-2y=0$$
;

3)
$$2x - 1 = 0$$

$$x + 3 = 0;$$

4)
$$y + 3 = 0$$
, $5y - 7 = 0$.

Задача 11.

Доказать, что в следующих случаях две данные прямые совпадают:

1)
$$3x + 5y - 4 = 0$$
,

$$6x + 10y - 8 = 0;$$

2)
$$x - y$$
 2 = 0,

$$x \quad 2 - 2y = 0;$$

3)
$$x \quad 3 - 1 = 0$$
,

$$3x-3=0.$$

Задача 12.

Определить, при каких значениях a и bдве прямые

$$ax - 2y - 1 = 0,$$
 $6x - 4y - b = 0$

$$6x - 4y - b = O$$

1) имеют одну общую точку; 2) параллельны; 3) совпадают.

Задача 13.

Определить, при каких значениях m и n две прямые

$$mx + 8y + n = 0,$$

$$2x + my - 1 = 0$$

1) параллельны; 2) совпадают; 3) перпендикулярны.

Задача 14.

Определить, при каком значении *m* две прямые

$$(m-1)x + my - 5 = 0,$$

$$mx+(2m-1)y+7=0$$

пересекаются в точке, лежащей на оси абсцисс.

Задача 15.

Определить, при каком значении *m* две прямые

$$mx + (2m + 3 + m + 6 = 0, (2m + 1)x + (m - 1)y + m - 2 = 0$$

Установить, пересекаются ли в одной точке три прямые в следующих случаях:

пересекаются в точке, лежащей на оси ординат.

Задача 16.

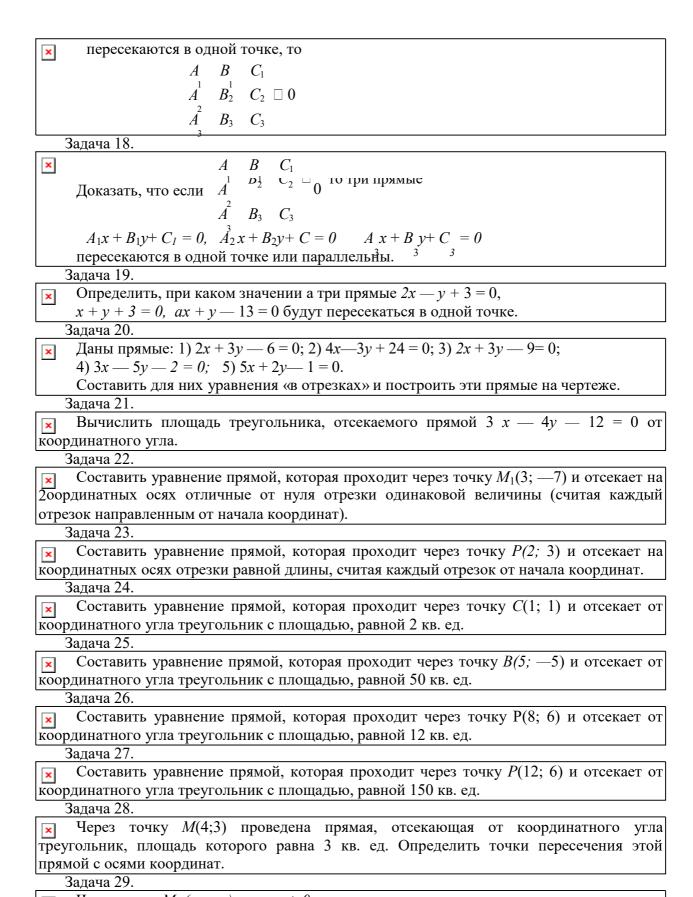
$$4x \quad 5y + 5 = 0$$

$$3x \quad y + 2 = 0$$

$$2) 3v \quad v + 3 = 0$$

1)
$$2x+3y-1=0$$
, $4x-5y+5=0$, $3x-y+2=0$;
2) $3x-y+3=0$, $5x+3y-7=0$, $x-2y-4=0$;
3) $2x-y+1=0$, $x+2y-17=0$, $x+2y-3=0$,

$$3)2x - v + 1 = 0$$


$$x + 2v - 17 = 0$$

$$x + 2v - 3 = 0$$

Задача 17.

Доказать, что если три прямые

$$A_1 + B_1 y + C_1 = 0$$
, $A_1 + B_2 y + C = 0$ $A_1 x + B_2 y + C = 0$

Через точку M_{l} (x_{l} ; y_{l}), где $x_{l}y_{l} > 0$, проведена прямая

 $egin{array}{c} x & \supset y & \supset 1 \end{array}$ отсекающая от координатного угла треугольник, площадь

которого равна S. Определить, при каком соотношении между величинами х $_{l}>y_{l}$ **и** S отрезки a и b будут иметь одинаковые знаки.

Задача 30.

Даны уравнения прямых:
$$1) x - 2 = 0; \quad 2) x + 2 = 0; \quad 3) y - 3 = 0; \quad 4) y + 3 = 0;$$

$$5) x \quad 3 + y - 6 = 0; \quad 6) x - y + 2 = 0; \quad 7) x + y \quad 3 + 2 = 0;$$

$$8) x \cos \Box - y \sin \Box - q = 0, q > 0; \quad \Box - \text{острый угол};$$

$$9) x \cos \Box + y \sin \Box + q = 0, q > 0; \quad \Box - \text{острый угол}.$$
 Определить полярный угол нормали \Box и отрезок p для каждой из данных прямых; по полученным значениям параметров \Box и p построить эти прямые на чертеже (впоследних двух случаях построение прямой выполнить, считая $\Box = 30 \Box$ и $q = 2$).

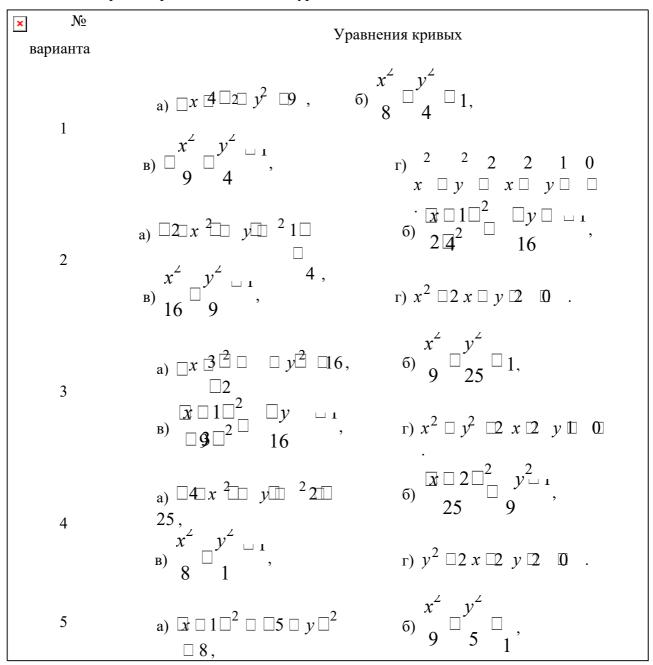
Задача 31.

Задана прямая линия (а) и точка A. Требуется найти уравнение плоскости,

прохолящей церез точку А и солержащей прямую (а)

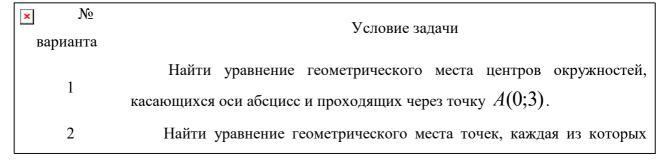
проходящей через	в точку A и содержащей прямую (a).	
х № варианта	Уравнение прямой (а)	$A^{\square}x$;
1	$ \begin{array}{c c} x \square 2_{\square} & y \square 3_{\square} & z \square 1 \\ 1 & 2 & 3 \end{array} $	Toura $3, 4, 0 \square$
2	$ \begin{array}{c c} x \square 3 & y \square z \square 1 \\ 2 & 1 & 2 \end{array} $	$A \square \square 1, 1, 0$
3	$ \begin{array}{c c} x & 4 & y & 3 & z \\ 5 & 2 & 2 \end{array} $	$A\square 3,1,\square$
4	$ \begin{array}{c} x & y \square 2 \square z \square 1 \\ 7 & 3 & 5 \end{array} $	2□
5	$ \begin{array}{c cccc} x & \square & 1 & y & \square & 1 & z & \square & 2 \\ 3 & & 2 & & \square & 1 \end{array} $	<i>A</i> □1, 3, □ 2 □
6	$ \begin{array}{c c} x & y & 2 & z & 1 \\ 4 & 3 & 1 \end{array} $	$A\Box 4$,
7	$ \begin{array}{c c} x & 1 & y & z & 3 \\ 2 & 3 & 5 \end{array} $	□ 1, 3 □
8	$ \begin{array}{c c} x & 2 & y & 1 & z \\ \hline & 3 & 2 & 2 \end{array} $	
9	$ \begin{array}{cccc} x & y & z & 2 \\ 6 & 1 & 1 \end{array} $	A=3,2,1
10	$ \begin{array}{c c} x \square 3 & y \square 3 & z \\ 2 & 2 & 3 \end{array} $	

 $A\square 1, 2,$


Методические указания по выполнению заданий

Для выполнения предложенных заданий на практических занятиях необходимо изучить материал лекции по данной теме. Основные определения и теоремы. При этом следует учитывать, что предложенный в лекции материал частично опирается на некоторые разделы из школьного курса математики, которые также желательно было бы повторить для хорошего и полного усвоения дисциплины.

Практическое занятие Тема занятия «Кривые второго порядка»


Цель занятия: познакомить студентов с основными понятиями аналитической геометрии на плоскости. Рассмотреть различные виды уравнения кривых на плоскости на примере конкретных задач. Научиться строить кривые второго порядка по каноническому виду уравнения кривой. Находить основные характеристики: фокус, асимптота, эксцентриситет, директриса и т.п. Научить решать типовые задачи.

Задания Построить кривые по заданным уравнениям.

B)
$$\frac{x^2}{1} \cup \frac{y^2}{9} \cup \frac{1}{1}$$
, r) $y^2 \cup x^2 \cup 2 \times 12 \times y \cup 0$
a) $x^2 \cup 3 \cup 2 \cup 9$, 6) $\frac{x^2}{9} \cup \frac{y^2}{5} \cup \frac{1}{1}$, r) $\frac{x^2}{9} \cup \frac{y^2}{10} \cup \frac{1}{1}$, r) $\frac{x^2}{10} \cup \frac{y^2}{10} \cup \frac{1}{10}$, r) $\frac{x^2}{10} \cup \frac{y^2}{10} \cup$

Решить задачу.

×	вдвое ближе к точке $A(1;0)$, чем к точке $B(\square 2;0)$
	Найти уравнение геометрического места точек, для которых
3	отношение расстояния до начала координат к расстоянию до прямой
	$3x \square 6 \square 0$ равно $0,6$.
	Найти уравнение геометрического места точек, каждая из которых
4	находится вдвое дальше от точки , чем от оси ординат.
	Найти уравнение геометрического места точек, равноудаленных от
5	точки $A(2;2)$ и оси абсцисс.
	Фокусы гиперболы находятся в точках $F_1(7;0)$ и $F_2(\Box 7;0)$.
6	Гипербола проходит через точку . Найти уравнения ее асимптот и
	угол между ними.
7	На эллипсе $ \frac{x^2}{441} \Box \frac{y^2}{216} \Box 1 $ найти точки, в которых фокальные
	радиусы были бы взаимно перпендикулярны.
	Найти параметр параболы $y^2 \square 2px$
8	и уравнение ее директрисы, если известно, что эта парабола проходит через точки пересечения прямой
	$y \square x$ с окружностью $x^2 \square y^2 \square 6x \square 0$.
	На гиперболе $9x^2$ $\square 16 y^2$ \square
9	левого фокуса вдвое меньше, чем от правого. найти точки, расстояние которых от
	Найти уравнение эллипса, у которого эксцентриситет равен 0,8, а
10	фокальные радиусы одной из его точек равны 2 и 3, полагая, что большая
	ось эллипса совпадает с осью абсцисс, его центр – с началом координат.
	ora similar confidence of the family of the family Roop Amilian

Методические указания по выполнению заданий

Для выполнения предложенных заданий на практических занятиях необходимо изучить материал лекции по данной теме. Основные определения и теоремы. При этом следует учитывать, что предложенный в лекции материал частично опирается на некоторые разделы из школьного курса математики, которые также желательно было бы повторить для хорошего и полного усвоения дисциплины.

Практическое занятие Тема занятия «Введение в математический анализ. Дифференциальное исчисление функции одной переменной»

Цель занятия: изучение основных математических понятий, их взаимосвязи и развития, а также отвечающих им методов расчёта, используемых для анализа, моделирования и решения прикладных задач.

Задания

Задача 1

(1.1 — 1.12) Сформулировать определение предела функции в точке х \square а

Исходя из определения доказать, что

1.1.
$$\lim_{x = 1} \frac{6x \square x^2 \square 5}{\neg x \square 1} \square 4.$$

1.3.
$$\lim_{x \to 2} \frac{x^2 \Box 2x}{\overline{x^2} \Box 3x \Box 2} \Box 2.$$

1.2.
$$\lim_{x = \Box 1} \frac{x^2 \Box 5x \Box 4}{\neg x \Box 1} \Box 3.$$

1.4.
$$\lim_{x = 1/2} \frac{x^2 \Box 4x \Box 12}{\overline{x}^2 \Box 2x} \Box 4$$

1.5.
$$\lim_{x \to 3} \frac{x^2 + 9}{\overline{x^2} + 3x} = 2.$$

1.7.
$$\lim_{x \to 1} \frac{x^2 - 3x - 4}{x^2 - x} = 5.$$

1.9.
$$\lim_{x \cap \Box^2} \frac{x^2 \Box 3x \Box 2}{\Box x \Box 2} \Box \Box 1$$

1.6.
$$\lim_{x \to \Box 3} \frac{x^2 \Box 2x \Box 3}{\overline{x^2} \Box 4x \Box 3} \Box 2.$$

1.8.
$$\lim_{x \to 2} \frac{5x \Box x^2 \Box 6}{-x \Box 2} \Box 1.$$

1.10.
$$\lim_{x \to 3} \frac{x^2 \Box 2x \Box 3}{\neg x \Box 3} \Box 4.$$

1.12.
$$\lim_{x = 4} \frac{x^2 \Box x \Box 20}{ \overline{} x \Box 4} \Box 9.$$

(1.13-1.20) Сформулировать определение предела функции при х \square \square . Исходя из определения доказать, что

1.13.
$$\lim_{x = \square} \frac{2x \square 1}{\overline{x} \square 1} \square 2.$$

1.15.
$$\lim_{x = \Box \Box} \frac{3}{x \Box 2} \Box 3.$$

1.17.
$$\lim_{x = 0} \frac{\overset{x}{\cancel{4}} \overset{2}{\cancel{3}} \overset{2}{\cancel{x}}}{\overline{\cancel{x}} \overset{1}{\cancel{1}}} = 3.$$

1.19.
$$\lim_{x \to 0} \frac{x \to 3}{\overline{x \to 7}} \to 1$$
.

1.14.
$$\lim_{x = \square} \frac{4x \square 2}{\overline{x} \square 1} \square 4$$
.

1.16.
$$\lim_{x = \square} \frac{5x \stackrel{\square}{3}}{\overline{x} \square 3} \square 5.$$

1.18.
$$\lim_{x \to 0} \frac{2^{-5x}}{\overline{x} - 3} = 5$$
.

1.20.
$$\lim_{x = \Box} \frac{6x \Box 7 \Box 3}{2\overline{x} \Box 5}$$
.

(1.21 - 1.30)Сформулировать определение предела функции при $x \square \square \square$. Исходя из определения предела доказать, что

1.21.
$$\lim_{x = \square} \frac{1 \square 2x}{\overline{x} \square 1} \square \square 2$$
.

1.22.
$$\lim_{x \to \Box} \frac{2 \Box 3x}{\overline{x} \Box 2} \Box \Box 3$$
.

1.23.
$$\lim_{x = 0} \frac{4 \square x}{\overline{x} \square 3} \square^{-1}$$
.

1.24.
$$\lim_{x \to \Box} \frac{3 \Box 2x}{\overline{3} \Box x} \Box 2$$
.

1.25.
$$\lim_{x \in \mathbb{R}} \frac{5 \square 2x}{\overline{3} \square x} \square 2$$
.

1.26.
$$\lim_{x \to \Box} \frac{5x \Box 2}{T \Box x} \Box 5$$
.

1.27.
$$\lim_{x = \square} \frac{6x \square 7}{3} \square 2$$
.

1.28.
$$\lim_{x = 0} \frac{5 \square 4x \square 2}{3 \square 2x}$$
.

1.29.
$$\lim_{x = 0} \frac{3 \square 8x}{7 \square 4x} \square 2.$$

1.30.
$$\lim_{x \in \mathbb{R}} \frac{10x \square 3}{\overline{5x} \square 9}$$
.

Задача 2

Найти предел функции при разных значениях x_0 .

2.1.
$$\lim_{x \to x_0} \frac{x^2}{-x^2 6x_1}$$

a)
$$x_0 = 1$$
;

$$\mathbf{x}_0 \square -1$$
;

$$x_0 \square -1;$$
 $B) x_0 \square \square.$

2.2.
$$\lim_{\mathbf{x} \supseteq \mathbf{x}_0} \frac{5\mathbf{x}^2 \square 8\mathbf{x} \square 4}{\square 4 \square \mathbf{x}^2}, \qquad \text{a) } \mathbf{x}_0 = 1 \; ; \qquad \text{b) } \mathbf{x}_0 \square -2 \; ; \qquad \text{b) } \mathbf{x}_0 \square \square .$$

a)
$$x_0 = 1$$

B)
$$X_0 \square \square$$
.

2.3.
$$\lim_{x \to x_0} \frac{x^2 - 3x - 4}{x^2 - 16},$$

a)
$$x_0 = 2$$
; $6) x_0 \square 4$;

$$\mathbf{B}) \, \mathbf{X}_0 \, \square \, \square \, .$$

2.4.
$$\lim_{x \to x_0} \frac{x^2 \Box 3x \Box 10}{\Box x^2 \Box 25}$$
, a) $x_0 = -1$;

a)
$$x_0 = -1$$

$$6) x_0 \square 5;$$

B)
$$X_0 \square \square$$
.

2.5.
$$\lim_{\mathbf{x} \supset \mathbf{x}_0} \frac{\mathbf{x}^2 \square \mathbf{1}}{\mathbf{x}^2 \square \mathbf{5} \mathbf{x} \square \mathbf{4}},$$

a)
$$x_0 = 2$$
;

6)
$$x_0$$
 □ -1;

$$\mathbf{B}) \, \mathbf{X}_0 \, \square \, \square \, .$$

2.6.
$$\lim_{x \to x_0} \frac{x^2 \Box 4}{x^2 \Box 5x \Box 6},$$

a)
$$x_0 = 1$$
;

$$\mathbf{B}) \ \mathbf{X}_0 \ \Box \ \Box \ .$$

2.7.
$$\lim_{x \supseteq x_0} \frac{x^2 \square 3x \square 4}{\overrightarrow{x}^2 \square 16},$$

a)
$$x_0 = 2$$
;

$$B) X_0 \square \square.$$

2.8.
$$\lim_{\mathbf{x} = \mathbf{x}_0} \frac{\mathbf{x}^2 \square 2\mathbf{x} \square 3}{\mathbf{x}^2 \square},$$

a)
$$x_0 = 2$$
;

6)
$$x_0 \square -3$$
;

$$B) \ X_0 \ \Box \ \Box \ .$$

б)

2.22.

2.23.
$$\lim_{x \to x_0} \frac{4x^2 \Box x \Box 3}{3\overline{x}^2 \Box 6x \Box 3}$$
, a) $x_0 = -1$;

a)
$$x_0 = -1$$
;

$$\mathbf{x}_0 \square 1;$$

$$x_0 \square 1;$$
 $B) x_0 \square \square.$

2.24.
$$\lim_{x \sqsubseteq x_0} \frac{2x^2 \sqsubseteq 3x \sqsubseteq 5}{4\overline{x}^2 \sqsubseteq 5x \sqsubseteq 1};$$
 a) $x_0 \sqsubseteq 1$; b) $x_0 \sqsubseteq -1$; b) $x_0 \sqsubseteq -1$.

a)
$$\mathbf{x}_0 \square \mathbf{1}$$
;

$$\mathbf{B}) \ \mathbf{X}_0 \ \Box \ \Box.$$

2.25.
$$\lim_{x \sqsubseteq x_0} \frac{2x^2 \sqsubseteq 7x \sqsubseteq 3}{2x^2 \sqsubseteq 18};$$

$$a)$$
 $x_0 \square 1$; $6)$ $x_0 \square 3$;

B)
$$X_0 \square \square$$
.

2.26.
$$\lim_{\mathbf{x} \supseteq \mathbf{x}_0} \frac{\mathbf{x}^2 \square 6\mathbf{x} \square 7}{\mathbf{x}^2 \square 5\mathbf{x} \square 4}; \qquad \text{a) } \mathbf{x}_0 \square -1; \qquad \qquad \mathbf{6)} \mathbf{x}_0 \square 1;$$

a)
$$\mathbf{x}_0 \square -1$$
;

B)
$$X_0 \square \square$$
.

2.27.
$$\lim_{x \sqsubseteq x_0} \frac{2x^2 \sqsubseteq 3x \sqsubseteq 2}{\overline{x^2} \sqsubseteq 5x \sqsubseteq 14}; \qquad a) \ x_0 \sqsubseteq 1; \qquad 6) \ x_0 \sqsubseteq 2; \qquad b) \ x_0 \sqsubseteq \sqsubseteq.$$

a)
$$x_0 \square 1$$
;

$$\mathbf{B}) \mathbf{X}_0 \square \square$$

2.28.
$$\lim_{x \to x_0} \frac{x^2 \to 4x \to 21}{\overline{x^2} \to x \to 12};$$

$$\mathbf{B}) \mathbf{X}_0 \square \square$$

2.29.
$$\lim_{x \to x_0} \frac{x^2 - 3x - 28}{x^2 - 16};$$

$$\mathbf{B}) \mathbf{X}_0 \square \square.$$

2.30.
$$\lim_{x \sqsubseteq x_0} \frac{x^2 \sqsubseteq 2x \sqsubseteq 35}{\overline{x}^2 x 20}; \quad a) \ x_0 \sqsubseteq 1; \qquad 6) \ x_0 \sqsubseteq 5;$$

a)
$$x_0 \square 1$$
 ;

$$\mathbf{B}) \ \mathbf{X}_0 \ \Box \ \Box.$$

Задача 3

Найти указанные пределы функций, не пользуясь правилом Лопиталя.

6)
$$\lim_{x \to 0} \frac{x^2}{x \to 1} \to \frac{x_2 \to 1}{x \to 2}$$
, B) $\lim_{x \to 0} \frac{1}{x \to 2} \to 5$,

$$\Gamma) \lim_{x = 0} \frac{\sin \frac{x}{2} \Box x}{\neg tg x}$$

$$\Gamma) \lim_{x = 0} \frac{\sin \frac{x}{2} \Box x}{\Box tg x}, \qquad \qquad \exists \lambda \in \mathbb{R}, \qquad \qquad \exists x \in \mathbb{R}, \qquad \qquad \exists$$

e)
$$\lim_{x \to \Box} x^2 tg \frac{1}{\overline{x^3} \Box 1}$$

3.2. a)
$$\lim_{x \to 0} \frac{|x| - |x|}{3x}$$
, 6) $\lim_{x \to 0} \frac{|2x^2|}{|x| - 1} = \frac{|x_2| - 1}{|x| - 3}$, B) $\lim_{x \to 0} \frac{|x_2| - |x|}{|x| - 3}$,

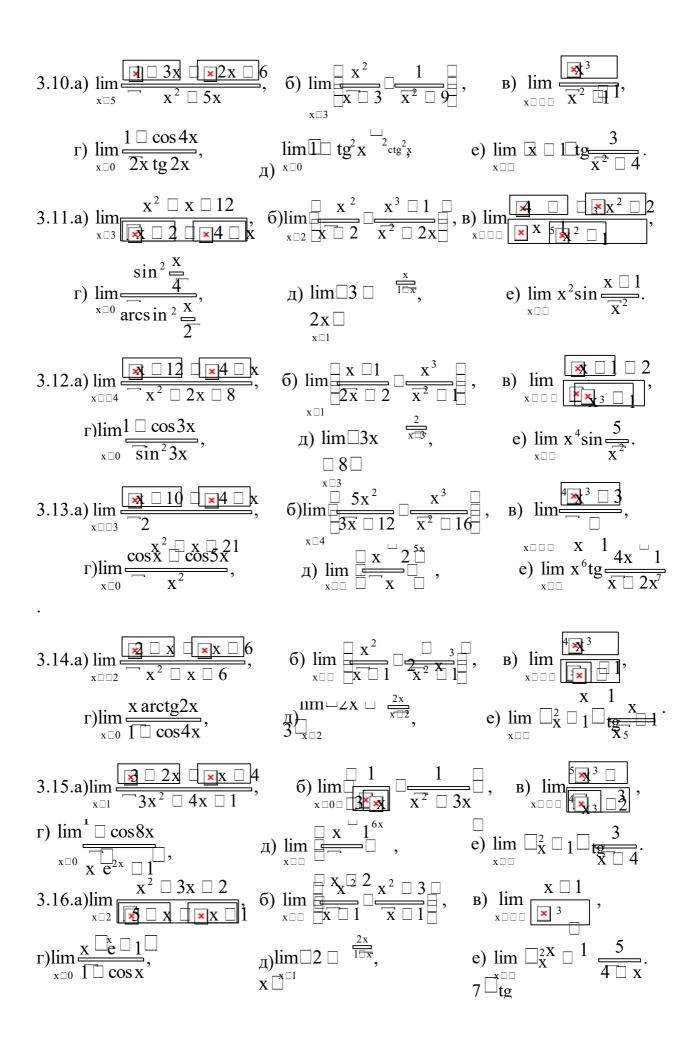
6)
$$\lim_{x \to 0} \frac{2x^2}{\overline{x} + 1} = \frac{x_2}{\overline{x} + 3} = 0$$
,

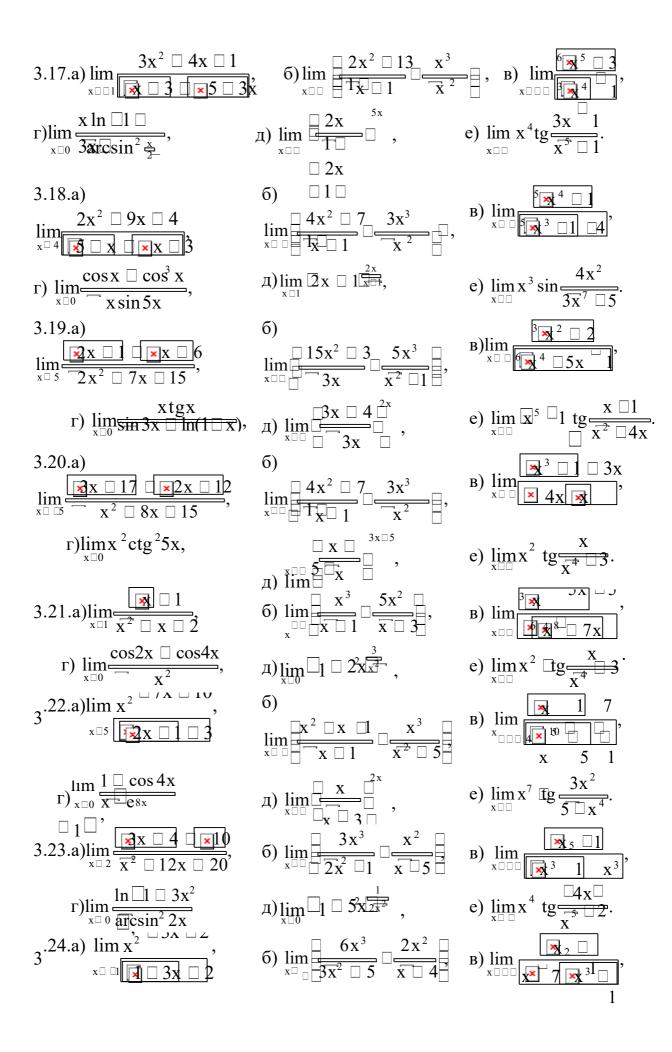
B)
$$\lim_{x \to 0} \frac{ \underbrace{ X^2 + X^2 + \underbrace{ X^2$$

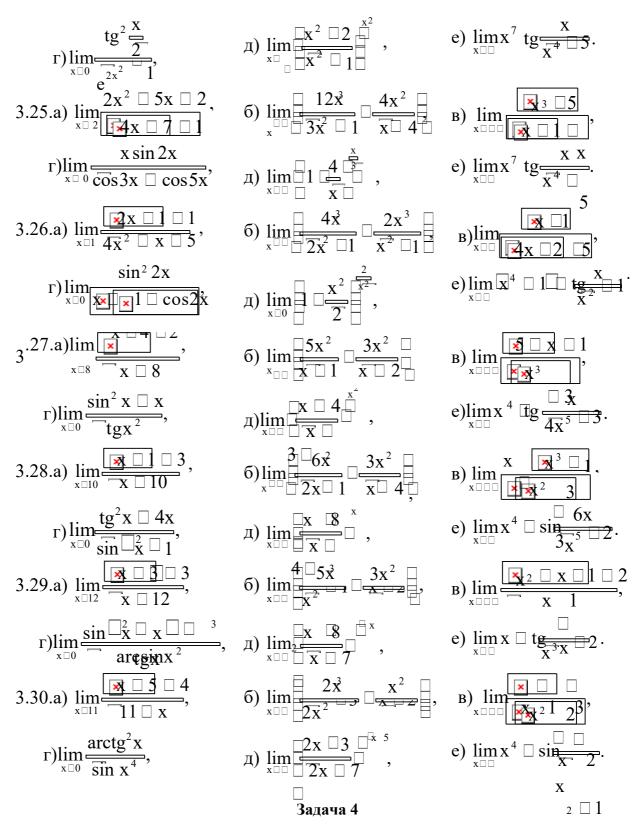
$$\Gamma) \lim_{x \to 0} \frac{1}{5x^2} = \frac{1}{5}$$

$$\Gamma) \lim_{x=0}^{1} \frac{\cos x}{5x^{2}}, \qquad \qquad \text{ Im } \frac{3}{x} x x^{x},$$

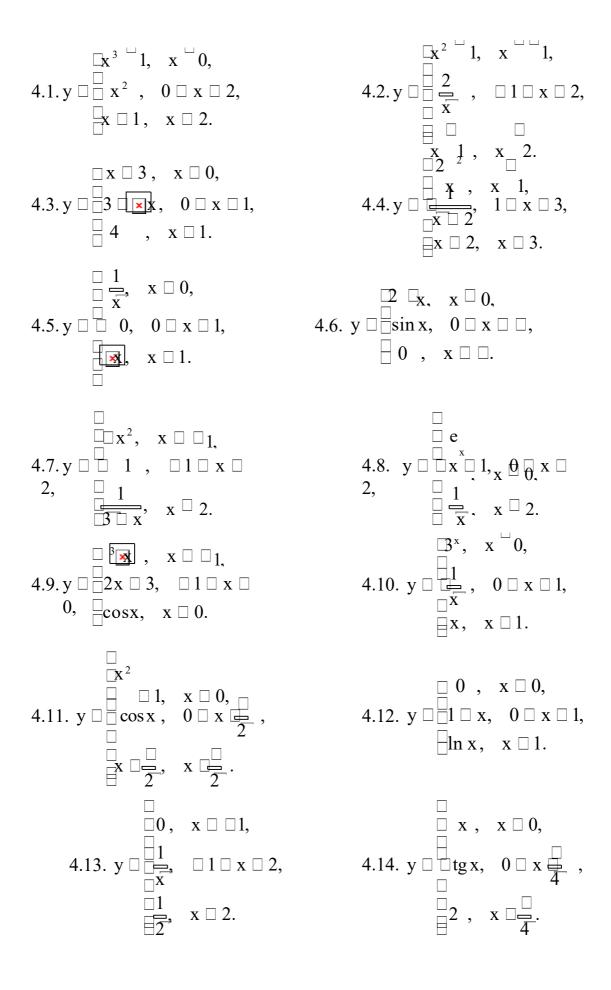
e)
$$\lim_{x \to 0} x \operatorname{tg} \frac{5x}{x}$$
.

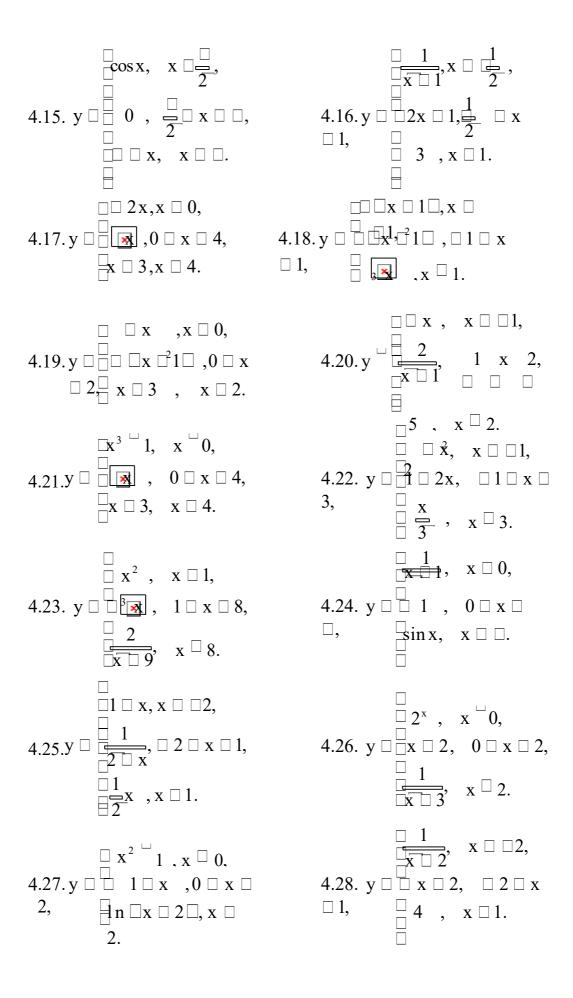

3.3. a)
$$\lim_{x \to 7} \frac{2}{x + 7}$$
, 6) $\lim_{x \to 0} \frac{1}{x} \frac{x}{x_2}$,

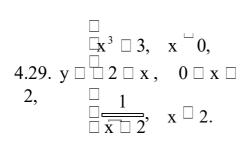

6)
$$\lim_{x \to 0} \frac{1}{X} \frac{x \oplus 1}{X_2}$$
,


B)
$$\lim_{x = 0} \frac{3x | \mathbf{x} | \mathbf{x} | \mathbf{x} | \mathbf{x} | \mathbf{x}}{| \mathbf{x} | \mathbf{x} |}$$
,

1)
$$\lim_{x \to 0} \frac{\arcsin 3x}{3x^2}$$
, π) $\lim_{x \to 1} \frac{1}{x} \frac{2}{x^2} \frac{1}{x}$, e) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{5} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{3}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1}{x^2} \frac{1}{x}$, g) $\lim_{x \to 1} \frac{3}{x^2} \frac{1}{x^2} \frac{1$


4 □ 2





Функция y=f(x) задана различными аналитическими выражениями для различных областей изменения независимой переменной. Найти точки разрыва функции, если они существуют, указать их характер. Сделать чертеж.

$$4.30.^{y} \stackrel{\square}{=} \frac{1}{\overline{x}} , 0 \square x \stackrel{1}{=} \frac{1}{2},$$

$$\square \square 2 , x \stackrel{1}{=} 2.$$

Задача 5

Задана функция $\ y \ \square \ f(x)$ и два значения аргумента $\ x$ пределы функции при приближении к каждому из заданны устана интайты слева и справа; 2) установить, является ли данная функция непрерывной или разрывной для каждого из заданных значений х; 3) сделать схематический чертёж.

5.1.
$$y \square 7^{\frac{1}{10}}_{10}$$
; $x_1 \square 10$; $x_2 \square 9$.

5.2.
$$y \square 7 \xrightarrow{1}_{x 7}; x \square -7; x \square -8$$
.

5.3.
$$y \square 25 \stackrel{1}{\xrightarrow{x_1}}; x_1 \square 11; x_2 \square 9$$
.

5.4.
$$y \square 12^{\frac{1}{11}}_{11}$$
; $x \square -11$; $x \square -10$.

5.5.
$$y \square 7^{\frac{1}{12}}_{12}$$
; $x_1 \square -12$; $x_2 \square -10$.

5.6.
$$y \square 3^{\frac{1}{x \square + 2}}$$
; $x \square 12$; $x \square 13$.

5.7.
$$y \square 4 \stackrel{1}{\longrightarrow} x$$
; $x_1 \square 13$; $x_2 \square 11$.

5.8.
$$y \square 4^{\frac{1}{|3 - x|}}; x_1 \square -13; x_2 \square -11$$
.

5.9.
$$y \square 2^{\frac{1}{14}}_{14}$$
; $x_I \square 14$; $x_2 \square 13$.

5.10. y
$$\Box$$
 25 $\frac{1}{x \Box 14}$; $x_1 \Box -14$; $x_2 \Box -13$.

5.11.
$$y \square 2^{\frac{1}{2}}_{x}$$
; $x \square 3$; $x \square 5$.

5.12.
$$y \square 4\frac{1}{3}x$$
; $x \square 1$; $x \square 3$.

5.13.
$$y \square 3^{\frac{1}{x-2}}$$
; $x \square 2$; $x \square 4$.

5.14.
$$y \square 5^{\frac{1}{\square x}}; \quad x_1 \square \square 1; \quad x_2 \square 1.$$

5.15.
$$y \square 4^{\frac{1}{-}}$$
; $x_1 \square 1$; $x_2 \square 3$.

5.16.
$$y \square 2^{\frac{1}{2^{n-x}}}; \quad x_{1} \square -3; \quad x_{2} \square 0.$$

5.17.
$$y \square 9^{\frac{1}{-1}}_{x^2}; \quad x \square -2; \quad x_2 \square 0.$$

5.18.
$$y \square 3^{\frac{1}{x-1}}; \quad x_1 \square -1; \quad x_2 \square 1.$$

5.19.
$$y \square 5^{\frac{2}{x \boxminus 5}}; x_1 \square -5; x_2 \square 1.$$

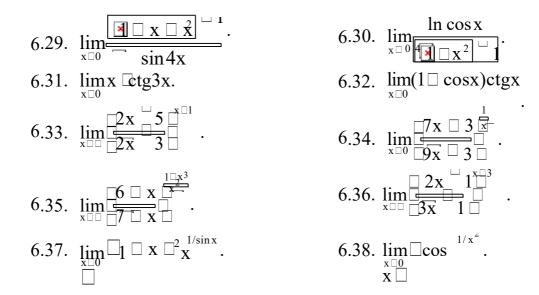
5.20.
$$y \square 9^{\frac{1}{3}}$$
; $x \square -5$; $x \square -3$.

5.21.
$$y \square \overrightarrow{6_{x-6}}; x_1 \square 6; x_2 \square 5.$$

5.22.
$$y \square \overrightarrow{6_{x 6}}$$
; $x \square -6$; $x \square -4$.

5.23.
$$y \square 16^{\frac{1}{6x}}; x_1 \square 9; x_2 \square 7$$
.

5.23.
$$y \square 16^{\frac{1}{n-1}}; x_1 \square 9 ; x_2 \square 7$$
. 5.24. $y \square 16^{\frac{1}{n-1}}; x_1 \square 8 ; x_2 \square 6$.


- 5.25. $y \square 7^{\frac{1}{7}}_{7}$; $x_1 \square 7$; $x_2 \square 6$. 5.26. $y \square 8^{\frac{1}{8}}$; $x_1 \square -8$; $x_2 \square -7$.
- 5.27. $y \square 9^{\frac{1}{3-4}}$; $x_1 \square 4$; $x_2 \square 2$. 5.28. $y \square 4^{\frac{1}{3-4}}$; $x_1 \square -4$; $x_2 \square -2$.
- 5.29. $y \square 4^{\frac{1}{9-x}}; x_1 \square 9; x_2 \square 7.$ 5.30. $y \square 1^{\frac{1}{p-9}}; x_1 \square -9; x_2 \square -8.$

Задача 6

Вычислить пределы функции

- 6.1. $\lim_{\mathbf{x} = 3} \frac{\mathbf{x}^2 \Box 1}{2\mathbf{\overline{x}}^3 \Box \mathbf{x}^2 \Box 3}.$
- 6.3. $\lim_{x = 2} \frac{x = 2}{x^3 = 2x = 12}$.
- $6^{.5}. \lim_{x = 4} \frac{6}{\overline{x}^{3} 64}.$
- 6.7. $\lim_{x \to 3} \frac{2 \times 3}{3 \times 3} = 3$
- 6.9. $\lim_{x \to 2} \boxed{3}$
- 6.11. $\lim_{x = \Box} \frac{\overline{3x^3} \Box 4x^2 \Box 8}{\overline{75x^3} \Box 2x^2 \Box x}.$
- 6.13. $\lim_{x \to 0} \frac{x^2 \Box 2x \Box 5}{x^3 \Box 3x \Box 7}$
- 6.15. $\lim_{x \to \infty} \frac{x^2}{x + 3} = x$.
- 6.17. lim 4x 1
- 6.19. $\lim_{x \to 0} \frac{\text{tg6x}}{\overline{\sin} 13x}$
- 6.21. $\lim_{x=0} \frac{\arcsin 5x}{\text{tg}2x}$.
- 6.23. $\lim_{x \to 0} \frac{\ln^2(1 \Box 2x)}{\sin^2 6x \ \Box \ arcsin^3 x}.$
- 6.25. $\lim_{x \to 0} \frac{\ln(1 \Box 3x)}{\sin 6x}.$ 6 $\lim_{x \to 0} \frac{1 \Box \cos x}{\Box \cos x/2}.$

- 6.2. $\lim_{x \to 4} \frac{x^2 \Box x \Box 12}{\sqrt{2} \Box 5 \sqrt{2}}$
- 6.4. $\lim_{\mathbf{x} \sqsubseteq 3} \frac{3\mathbf{x}^2}{\mathbf{x}^2} = \frac{1}{11\mathbf{x} \sqsubseteq 6}$
- 6.6. $\lim_{x = 1/3} \frac{2x^2 5x 3}{3x_27x^3 1}$.
 6.8. $\lim_{x = 1/3} \frac{2 x_3}{3x_27x^3 1}$.
- $6.10. \lim_{\substack{x=2\\ x\neq 4}} \frac{x}{16} \frac{34}{x^2}.$
- 6.12. $\lim_{x \to 0} \frac{2x^3 \Box 7x \Box 1}{3x^2 \Box 5x \Box 6}$
- 6.14. $\lim_{x \to 0} \frac{1}{3} \xrightarrow{9} \frac{6}{2}$.
- 6.16. $\lim_{x \to 0} \boxed{x \to 5} \boxed{x}$
- 6.18. $\lim_{x \to -\infty} \Box_{\mathbf{X}} \xrightarrow{\mathbf{X}} \mathbf{X}^2 \Box \mathbf{7}_{\mathbf{X}}$
- 6.22. $\lim_{x \to 0} \frac{\sin^2 3x}{1 \cos 5x}$
- 6.24. $\limsup_{x = 0} 2x = ctg3x$.
- 6.26. $\lim_{x = 0} \frac{1 = \cos x}{\overline{\sin^2 x}}.$
- 6.28. $\lim_{x \to 3} \frac{(e^{x \to 3})}{\operatorname{arctg}(x^2 \Box)}.$ 9)

Методические указания по выполнению заданий

Для выполнения предложенных заданий на практических занятиях необходимо изучить материал лекции по данной теме. Основные определения и теоремы. При этом следует учитывать, что предложенный в лекции материал частично опирается на некоторые разделы из школьного курса математики, которые также желательно было бы повторить для хорошего и полного усвоения дисциплины.

Практическое занятие Тема занятия «Функции нескольких переменных»

Цель занятия: осмыслить математический аппарат с практических позиций для решения конкретных экономических задач, научить находить область определения функциинесколькихпеременных и изображать на плоскости область определения функции двух переменных.

Задания

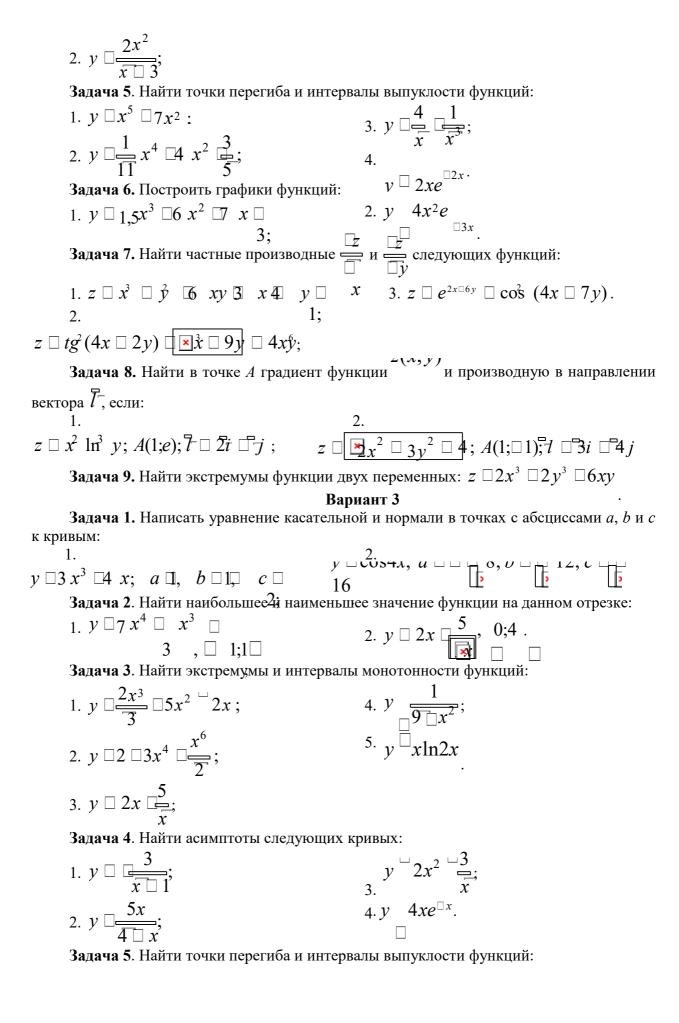
Вариант 1

Задача 1. Написать уравнение касательной и нормали в точках с абсциссами a, b и c к кривым:

$$y \square 3 x^3 \square 4 x; \quad a \square, \quad b \square \square, \quad c \square$$

$$2y \square ctg2x; \quad a \square \square 8, \quad b \square \square 12, \quad c \square$$

$$6$$


Задача 24 Найви наибольшее и наименьшее значение функции на данном отрезке: $y = \frac{y}{5} = \frac{2x}{x^2} = 0.7:3$

. 3 4 2.4 П. 2. Х — U,7,5 — Задача 3. Найти экстремумы и интервалы монотонности функций:

1.
$$y \square 6x^3 \square 9x^2$$
;
2. $y \square (x \square 5) (3)$;
3. $y \square 4x^2 \stackrel{?}{=};$
4. $y \square 9x$
 $2.5 1,5x^2$;
5. $\square ^2 \square$
2. $y \square 4x^2 \stackrel{?}{=};$
7. $y x e_{\square x}$

Задача 4. Найти асимптоты следующих кривых:

1. $y \square \frac{10x}{\overline{x} \square 2,3}$;	3. $y = \frac{x^2 \Box 7}{\sqrt{x^2 \Box 64}}$;
2. $y = \frac{1}{\sqrt{x^3 - 125}}$;	4. \Box \Box $5x^2$.
$\lambda \Box 1 \Delta J$	y e
Задача 5. Найти точки перегиба и интер	
1. $y \Box 0.5x^4 \Box 6x^2$:	3. $y = \frac{4,3}{2}$;
$2. y \square 9 \square x^4 \square 3x^2;$	3. $y \square \frac{4,5}{2 \square x^2}$; 4. $y \square x^2 e$
	4. $y \square x^2 e$
Задача 6. Построить графики функций:	2
1. $y \square x $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Задача 7. Найти частные производные =	$\stackrel{\square}{=}$ и $\stackrel{\square}{=}$ следующих функций:
	$x = \frac{8xy}{(5x \square 9y)} \square \arcsin[xy] \square 3x^5y$.
$ 2. z \square \ln(\cancel{x}y) \square 5^{5}\cancel{x}^{3}y) \square tg \frac{3x}{7y}; $	
Задача 8. Найти в точке A градиент фун	нкции и производную в направлении
вектора $ar{l}$, если:	
1.	$2 = 7 \square \times 2 \times \square \times \frac{X}{2} \cdot 4 \cdot (1 \cdot 2) \cdot 7 \square \square \square \square \square \square$
$z \square y^2(2x \square 3); A(\square 1;1); I \square 2i \square j$	2. $z \square x^2 y \square \xrightarrow{x} ; A(1;2); \overline{l} \square \square \square \square$
; Задача 9. Найти экстремумы функции да	вух переменных: $z \Box 4x^3 \Box xy^2 \Box 6x^2 \Box y^2$
Baj	риант 2
	ной и нормали в точках с абсциссами a, b и c
к кривым: 1.	$y \square \sin 5x$; $a \square \square 15$, $b \square \square 20$, $c \square \square 15$
_ 6 3	$y = \sin 3x$, $u = \frac{1}{10}$, $v = \frac{1}{10}$, $v = \frac{1}{10}$
	лочие функции на данном отрезке:
1. $y \square 2 x^3 \square 6 x^2$	
1. y = 2 % = 5 % ,	2. $y = \frac{x}{9} = \frac{9}{x}, = 2,3;$
Задача 3. Найти экстремумы и интервал	ы монотонности функций:
	3
1. $y = \frac{x^4}{12} = 9x^3$;	$y \sqcup \overline{4 - x^2};$
2. $y \square 3 x (x \square 2)^3$;	5. y $2x$ xe
3. $y = \frac{1}{\sqrt{\overline{x}^2}} = \frac{1}{7\overline{x}^4}$;	$y \Box \frac{\Box^{2}}{4 - x^{2}};$ 4. 5. $y \ 2x \ xe$ $\Box \Box \Box^{4x}.$
$4x^2 / x$ Задача 4. Найти асимптоты следующих	кривых:
v	v 3
1. $y = \frac{x}{x-1}$;	$y \square \frac{x^2}{\overline{x^2} \square 5};$
	4. <i>y</i> xe
	\Box 12x.

	1. $y \square 3 x^5 \square 8 x \square$;	3. $y = \frac{10x^2}{(-2x^2)}$;
	2. $y \Box 5x^2 \Box 4x^3$;	$3. \ y = \frac{1}{1-2x^2},$
	- , – – ,	4. $y \square 7xe^{2x}$.
	Задача 6. Построить графики функций:	
	1. $y \square 2 x^3 \square 5 x^2 \square$	2. $y = \frac{4}{x^2} \cdot \frac{5x}{6}$.
	11;	$\frac{2}{x^2} \frac{1}{5x} \frac{1}{6}$
	Задача 7. Найти частные производные	$\frac{\Box}{\Box}$ и $\stackrel{\Box}{=}$ следующих функций:
	1. x	$z_2 = 7x \square 5y_{\square 2^{\square 3x \square 6y}}$
		z = 1 3. $z = 1$ z
	2. 2 urcig(2 ;	4(1, 1)
	Задача 8. Найти в точке A градиент функ	сции и производную в направлении
вект	ора \overline{l} -, если:	
	1. $z \square y^2 \ln x$; $A(e; \square 1)$; $\overline{t} \square \square 2i \square 2i$	2. z $(3 \times y^2 \times x)$; $A(2; 5)$; $t \cap 4i 3j$
;		
		ы функции двух переменных:
$Z \sqcup$	$2x^2 \square xy \square 5\mathring{y} \square 7x \square 4y \square 12.$	
		нант 4 й и нормали в точках с абсциссами a, b и c
-	ивым:	
_	1. $3 x^4 \square 5 x^2$, $a \square$, $b \square 2$, $c \square$	$\frac{2}{cig} (2x)$, $u \cup \cup_{i \in [0, 0]} 0$, $u \cup_{i \in [1, 2]} 12$, $c \cup_{i \in [1, 2]} 12$
$y \sqcup$		
	Задача 2. Найти наибольшее и наименьше 1.	<u></u>
1 , □	$x^3 \Box 5 \ x^2 \Box 2 \ x \Box 10, \Box \Box$	2. $y = \frac{x}{5}$,
$y \sqcup$	дадача 3. Найти экстремумы и интервалы —3, —4	⊔⊔Э,∠Ц
2;2	x^4	x = x + 12
	1. $y \square \square \stackrel{x^4}{=} \square 3x^2$;	3. $y = \frac{x}{x} = \frac{x}{x} = \frac{12}{1}$;
	2. $y \square \frac{2x^3}{5} \square 2x^4 \stackrel{\square}{=} \frac{x^2}{7}$;	$4. y \stackrel{\square}{\sim} 7x \stackrel{11}{=};$
	3 2	$5. y \square 3x^3 e_{\square 4x}$
	Задача 4. Найти асимптоты следующих к	оивых:
	7	$3x^2 \square 10x \square 3$
	1. $y = \frac{7}{x - 3}$;	$\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
	2. $y = \frac{2x}{x - 1}$;	3. $y \square x \square 4$; 4. $y \square xe^{\square 2x}$.
	$x = \frac{1}{x}$	
	Задача 5. Найти точки перегиба и интерва	
	1. $y \square 5 x^4 \square 8 x \square 3$;	$y = 5x^4$
	$2. y \square 6x^5 \square 9x^2;$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$A v \Box 2 r e^{-3n}$.

Задача 6. Построить графики функций:	
	$2. \ y \ \Box \frac{3x^3}{9 \ \Box x^2}.$
$egin{array}{c} egin{array}{c} egin{array$	\mathbf{P} и $\stackrel{\square z}{=}$ следующих функций:
	3. $z \square^{\cos(3} x \square' y = \frac{3x \square 4y}{\overline{x} \square y}$.
$z \square e^{\square x_2} \square \sin 3y \square arctg(5x \square$	
(7y); $(3a)$ дача 8. Найти в точке A градиент функ	щии и производную в направлении
вектора \overline{l} , если:	$2 \times 7 \times 2 \times $
$z \square y^2(2x \square 3); A(\square 1;1); l \square \square 2i \square j$	2. $z \square x^2 \square y$; $A(\square 1;1); l \square \square 2i \square l$
; Задача 9. Найти экстремумь 2 3 2 10 8 20. $z \square x \square xy \square y \square x \square y$ Вари	и функции двух переменных:
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_
 2 □ x □ xy □ y □ x □ y Вари Залача 1. Написать уравнение касательно 	Гант 5 й и нормали в точках с абсциссами a, b и c
к кривым:	in in nopmain b to mak e doednoodsin u, b ii e
1. y 🛶	2.
$y \square 5 x^2 \square 4 x \square 7; a \square 0, b \square, c \square \square$	
Задача 2. Найти наибольшее 4і наименьше	е значение функции на данном отрезке:
1. 7 3 , □ 1:3□:	2. $y = \frac{12}{x} = 3x$, $y = 3$; $y = \frac{12}{x} = 3$
$1;3\square;$ Задана 3_χ Найти жестремумы и интервалы	монотонности функций:
1. $y \Box 4x \Box 3x^2$;	4. $y = \frac{5x^2}{2}$;
2. $y \Box 1 \Box 5x \Box \frac{6x^4}{5}$;	~ 1 ¬x
3. $y \square x \square x$	5. $y \square xe^{\frac{x}{5}}$.
$\frac{3}{x}$ $\frac{\sqrt{7}}{7}$	
Задача 4. Найти асимптоты следующих кр	1
$n \perp 2$	3. $y \square \frac{x^2 \square 5x \square 4}{\neg x \square 3}$;
2. $y \square \frac{2x}{x \square 5}$;	$4. y \ \Box 3^{\frac{1}{x^2}}.$
Задача 5. Найти точки перегиба и интерва	лы выпуклости функций:
1. $y \square \square x^4 \square x \square$	3. $y \square \ln(x \square 1)$
2. $y \Box 9x^3 \Box 2x^2$; 11;	4. $y \square 3x \stackrel{1}{\sqsubseteq} x$
Задача 6. Построить графики функций:	2
1. $y \square 5x_3 \square 11x^2 \square 20x$;	2. $y = \frac{3x^3}{(-4)^2}$.

Задача 7. Найти частные производные $\stackrel{\square}{=}$ и $\stackrel{\square}{=}$ следующих функций:	
1. $x \ 3. \ z \ \Box \ln(x^2 \ \Box \ y^3) \ \Box \ e^{\Box x \Box y}.$	
$z \square x^5 \square 4 \hat{y} \square 5 \hat{x} y \square x 12;$	
\Box 2. $z \Box ctg(x^2 \Box y^3 \Box 2) \Box \cos$	
; x^2y	
Задача 8. Найти в точке A градиент функции и производную в направлен	ии
вектора \overline{l} -, если:	
1. 2.	
$z \square \sin(2x \square y); A(\square 8;0); l \square \square 2$ $z \square \square x^2 \square 3y^2 \square 4; A(1;1); l \square \square l$	
ј Задача 9. Найти экстремумы функции двух переменны 2 5 3 2 2 21 1	ıx:
$z \square x \square xy \square y \square x \square y \square$ Вариант 6	
. Задача 1. Написать уравнение касательной и нормали в точках с абсциссами a, b к кривым:	1 C
1. 2.	
1. $y \Box 5 x^3 \Box 6 x^2$; $a \Box$, $b \Box 2$, $c \Box$ 20 20 21 30 30 30 30 30 30 30 30 30 30 30 30 30	
задача 2. Паити наиоольшее 45 наименьшее значение функции на данном отреже.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Заданаз Найти экстремумы и интервалы монотонности функций:	
1. $y = \frac{5x^3}{2} = 3x^2$; $y = \frac{2}{(x + 1)}$;	
4.	
2. $y \Box 2x^3 \Box 3x^2 \Box 5x^4$; $x^2 x^2 5$	
3. $y \Box 5x^2 \Box \frac{x^4}{2}$;	
\mathcal{L}	
Задача 4. Найти асимптоты следующих кривых:	
1. $y \square \frac{7}{x \square 4}$; 3. $y \square \frac{2x^2 \square 5x \square 2}{\square x \square 1}$;	
$\lambda \sqcup 1$	
$2. y \square \underbrace{3x}_{\overline{y}\square 5}; \qquad \qquad 4. y \square x e^{\square 3x}.$	
$x \sqcup \mathfrak{Z}$ Задача 5. Найти точки перегиба и интервалы выпуклости функций:	
1. $y \Box 6 x^5 \Box 4 x^3 \Box$ 3. $y \Box \ln 2x \Box x$	
2. $y \square 5x^3 \square 3x^2$; 13;	
2. $y \square 5x^3 \square 3x^2$; 13; 4. $y \square 2x \square \frac{3}{\overline{x^2}}$.	
Задача 6. Построить графики функций:	
1. $y \square 8x^3 \square 5x^2 \square 22x$; $4x$	
1. $y \sqcup 8x^3 \sqcup 5x^2 \sqcup 22x$; 2. $y \Box \frac{4x}{2\overline{x} \sqcup 7}$.	
Задача 7. Найти частные производные $\stackrel{\bot Z}{=}$ и $\stackrel{\bot Z}{=}$ следующих функций:	

$z \square 5x^2 \square 4y^3 \square 5xy \square 8x \square 5y;$	3. $z \square 2^{6x} \square s \stackrel{y}{=} .$
$2. z \square \sin(2 x) \square 3x) \square 2^{xy}$	χ^2
	кции и производную в направлении
вектора \overline{l} , если:	1 77 1
$1 7 \text{Pin}^2 2x \cdot 4(1\cdot1) \cdot 7 77 77 77 77 77 77 77$	2.
1. $z \square y \ln^2 2x$; $A(1;1)$; $\overline{l} \square 2\overline{i} \square 2\overline{j} \square$; z	\square $\stackrel{?}{\longrightarrow}$ $\stackrel{?}{\nearrow}$ $\stackrel{?}{\square}$ $\stackrel{?}{\longrightarrow}$
Задача 9. Найти экстремум	ны функции двух переменных:
$z \square 2x^{2} \square 5xy \square 2x^{2} \square 4x \square 3y \square 10.$	
Ran	иант 7
	нант , нормали в точках с абсциссами а, в и с к
кривым:	-
$1.y \square 2x^3 \square 4x \square 5$;	$2.y \square \sin x$, $a \square 0,b \square \square/5$,
$a \square 0,b \square \square 1,c \square 1;$	$c \square \square / 20$.
№2. Найти наименьшее и наибольшее зна	
$ \begin{array}{cccc} 1 & ^{4} \Box 7x^{3} \Box 2, [\Box 3; 4]; \\ .y \Box 4x \end{array} $	$2.y \stackrel{x}{=} \frac{7}{7} \stackrel{7}{=} ,[0;5]$
•	I = A
№3. Найти экстремумы и интервалы моно $1.y \square 5x \square 7\hat{x};$	
	$4.y \ \Box \frac{3x^2}{x \ \Box 5};$
$2.y \square 2 \square 6x \square = \frac{x^4}{9};$	
_	$5. y \square xe^{\frac{x}{3}}$
$3.y \stackrel{x}{=} \stackrel{5}{=} \stackrel{5}{=};$	
5 х №4.Найти асимптоты следующих кривых	··
за планти испынготы следующих кривых	_
1 n \square 9	$3.y \square \frac{x^2 \square 10 x \square 21}{x \square 4};$
$1 \mathcal{Y} = \frac{1}{x \square 12}$	4
$2 \underbrace{\frac{2x}{x \square 11}}$	$y \square xe^{6x}$
$\frac{2}{x \square 1}$	
$y_0 = x_0 = x_0$ 11 №5. Найти точки перегиба и интервалы в 1 $x_0 = x_0 = x_0$ $x_0 = x_0$ $x_0 = x_0$	ыпуклости функций: . V □ III □ x □
_	$3_{3}\square$
$2x y = 7x x + 4x^2$;	4; 1
	$y \square 2x \square^{\overline{x}}$
№6. Построить графики функций:	2 3
$1.y = \frac{1}{7}x^5 = 3x^2;$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
7	5 5 = 2
№7. Найти частные производные 📛 и 🖃	іz ≡ следующих функций: lv

$1.^{z} \square 5x^{3} \square 4^{y_{3}} \square 6^{xy} \square 7^{x} \square 8y;$	$3.^{2} \Box e^{x^{2}} \Box \cos 3^{y} \Box arcig \frac{4x \Box 5}{5\overline{y} \Box 7}$
$2.^{2} \sin(5x^{2} \square 3y^{2}) \square \ln(2x \square 3y);$,
№8. Найти в точке А градиент функции $z(x,y)$ l , если:	и производную в направлении вектора
$1.z \square^{3} \cancel{2}^{2} \square_{x^{2}} \cancel{1}; A(1;5); \overrightarrow{l} \square 2\overrightarrow{l} \square \overrightarrow{j};$	
№9. Найти экстремумы функции двух перемен	х іных:
$z \square \square 2xy \square 3y \square^2 x \square 3y^2 \square 5x \square 7$	
Вариант	8
№1. Написать уравнения касательной и норм кривым:	мали в точках с абсциссами а,в и ск
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2.y \square x a \square \square 12, b \square \square 18, /9.$ $sin 3;$ $c \square \square$
№ 2. Найти наибольшее и наименьшее значени	не функции на данном отрезке:
1. 5^{-3} 4^{-3} , [2;3] $y \square x \square x \square$	2. $y \square x \square \overline{x}$ [3; 2].
№ 3. Найти экстремумы и интервалы монотонн	ности функций:
1. $y \square \frac{x^3}{5} \square 7x^2$; 2. $y \square 3x^3 \square 5x^2$	$\Box 11x$; 3. $y \Box \frac{(x \Box 2)^2}{\overline{x^2} \Box 3}$;
4. $y \sqcup 4^{x_3} \square \frac{x^4}{5}$; 5. $y \sqcup 2xe^{\frac{x^2}{5}}$.	
№ 4. Найти асимптоты следующих кривых:	
1. $y = \frac{12}{\overline{x} = 9}$; 3. y	$, \Box \frac{x^2}{\overline{x} \sqsubseteq 5x};$
№ 5. Найти точки перегиба и интервалы выпук	лости функций:
1. $y \square 7 x^5 \square 5 x \square 2$;	3. $y \square 5x \square \frac{2}{\overline{x}^{2}}$;
$2. y \square 2x^3 \square 11x^2;$	⁴ . $y \square 3x \square \ln x$
№ 6. Построить графики функций:	·
1. $y \square 3x^3 \square 14x^2 \square 42x$; 2. y	$\frac{\cancel{x} \cancel{5}\cancel{x}}{\cancel{2} \cancel{9}}$.
№7. Найти частные производные $\stackrel{\square_z}{\rightleftharpoons} u \stackrel{\square_z}{\rightleftharpoons}$ сле	едующих функций:

 $1 = \frac{1}{2x^2 \square 3y}; A(0;3); \qquad 2^{2} \stackrel{y}{=} 3x \square 4x \square 5 \ y, A(0;2); \overline{l} \square \overline{l} \square \overline{3}\overline{j}.$

№1. Написать уравнения касательной и нормали в точках с абсциссами a,b и с к кривым:

1.
$$y \sqcup \chi^5 \sqcup 4\chi^2 \sqcup 3$$
; $a \sqcup \Box 1, b \sqcup 2, c \sqcup 1$; $2. y \sqcup \iota g \angle x$; $a \sqcup \Box / 8, v \sqcup \Box / 6 c \sqcup \Box / 12$.

№ 2. Найти наибольшее и наименьшее значение функции на данном отрезке:

№ 3. Найти экстремумы и интервалы монотонности функций:

1.
$$y \square \frac{x^5}{5} \square 2\dot{x};$$
 2. $y \square 7\dot{x}(x \square 2);$ 3. $y \square \frac{3 \square \dot{x}}{x \square 13};$ 4. $y \square 15x \square \frac{7}{\dot{x}};$ 5. $y \square x \square 9 \ln x$

№ 4. Найти асимптоты следующих кривых:

1.
$$y = \frac{3x}{x - 4}$$
; 3. $y = \frac{3x^2}{x^2 - 7}$; 2. $y = \frac{1}{2 - 25}$; 4. $y = \frac{1}{x}$.

№ 5. Найти точки перегиба и интервалы выпуклости функций:

1.
$$y \square x^5 \square 6 x \square 1;$$
 3. $y \square \frac{9}{2 \square x^2};$ 2. $y \square 4x^3 \square 5x^2;$ 4. $y \square \frac{5 \ln x}{\overline{x}}.$

№ 6. Построить графики функций:

1.
$$y \square \xrightarrow{x^5} \square \hat{x} \stackrel{7}{\square} ;$$
 2. $y \square 4 \stackrel{11}{\square} \frac{11}{x^2 \square 36}$

№7. Найти частные производные $\stackrel{\square z}{\leftrightharpoons} u \stackrel{\square z}{\leftrightharpoons}$ следующих функций:
1. $\stackrel{\square}{=} 5x_3 \square 7 y^2 \square 9 xy \square 3 x \square y \square y \square 34;$ 3. $\stackrel{\square}{=} e^{7x \square y} \stackrel{\square}{=} \sin^2(2x \square 3y).$
$2^{\square^{2} \sqcup \iota g}(x_{3} \square y^{3} \square) \sin^{xy_{2}};$
№8. Найти в точке А градиент функции z(x,y) и производную в направлении вектора если:
$1.z \square^{3} \square^{2} \square x; A(2;5); \overline{l} \square 4\overline{i} \square^{2} 3\overline{f}; \qquad \qquad 2.z \square y \ln^{2} 2x; A(1;1); \overline{l} \square 2\overline{i} \square^{2} \overline{f}$
№9. Найти экстремумы функции двух переменных: $z \Box 5x^2 \Box 2y^2 \Box 2x^3 \Box xy^2$
Вариант 10
№1. Написать уравнения касательной и нормали в точках с абсциссами а,b и с кривым:
$1.^{y \square 3}x^{5} \square 4x^{2}; a \square 1, b \square 1, c \not = 2.^{y \square}\cos 3x; a \square \square/9,^{o \square \square}/12, c \square \square/18.$
№2. Найти наибольшее и наименьшее значение функции на данном отрезке:
1. $y \square 4 \stackrel{?}{x} \square 5 \stackrel{?}{x} \square$ 2 $y \square \frac{x \square 11}{x \square 11}$, [0;12].
7, Г□1;4]; 2. х□11 №3. Найти экстремумы и интервалы монотонности функций:
1. $y \square \frac{x^3}{\overline{15}} \square 3x^2$; 2. $y \square 4x^4 \square 9x^3 \square 7x^2$; 3. $y \square \frac{9 \square x^2}{\overline{x} \square 2}$;
4. $y = \frac{x}{6} = \frac{6}{x}$; 5. $y = 7e^{-x_2}$.
№ 4. Найти асимптоты следующих кривых:
1. $y = \frac{8x}{\overline{x} - 9}$; 3. $y = \frac{2x^2}{\overline{x}^2}$;
2. $y \square \frac{x \square 3x}{2 \square 25}$; 4. $y \square e^{\frac{3}{2} \square 7}$
№ 5. Найти точки перегиба и интервалы выпуклости функций:
1. $y \square \frac{1}{3} x^4 \square 5x^2$; 3. $y \square \frac{x}{\square \square x^2}$;
2. $y \square 7 x^3 \square 3,5 \hat{x} \square 3$; 4. $y \square e^{\square x_2}$

№ 6. Построить графики функций:

1.
$$y = \frac{2}{5}x^3 = 10x^2$$
; $y = \frac{4x^2}{\overline{x} = 3.2}$.

№7. Найти частные производные $\stackrel{\square_z}{=}_{\overline{x}} u \stackrel{\square_z}{=}_{\overline{y}}$ следующих функций:

1.
$$\overset{2}{=} x^3 = 4y^2 = 5 xy = 7 x$$
, 3. $\overset{2}{=} e^{x = 5y} = \frac{6x = 5y}{5x = 4y}$.

2. $z = \ln \underbrace{x}_{y} : \frac{x}{y}$; $\frac{x}{y} : \frac{x}{y}$; $\frac{x}{y} : \frac{x}{y} : \frac{x}{$

Задача 2. Решить дифференциальное уравнение:

Задача 3. Определить тип дифференциального уравнения и найти его характеристики:

$$2 \frac{\Box^2 u}{\Box x \Box y} \Box 2 \frac{\Box^2 u}{\Box y^2} \Box \frac{\Box u}{\Box x} \Box 3 \frac{\Box u}{\Box y} \Box u \Box 0.$$

Задача 4. Привести к каноническому виду уравнение

Задача 5. Решить задачу Коши для волнового уравнения методом Даламбера:

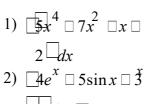
удовлетворяющее краевым условиям:

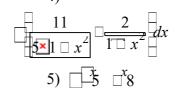
$$\begin{array}{c}
u \square x, \quad u \square$$

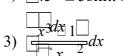
Задача 8. Решить уравнение теплопроводности для неограниченного стержня:

. Методические указания по выполнению заданий

Для выполнения предложенных заданий на практических занятиях необходимо изучить материал лекции по данной теме. Основные определения и теоремы. При этом следует учитывать, что предложенный в лекции материал частично опирается на некоторые разделы из школьного курса математики, которые также желательно было бы повторить для хорошего и полного усвоения дисциплины.

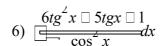

Практическое занятие Тема занятия «Неопределенный и определенный интегралы»


Цель занятия: выяснить задачу интегрального исчисления. Ввести понятие неопределенного интеграла, определенного интеграла, несобственного интеграла. Выяснить задачу интегрального вычисления и научиться применять основные методы интегрирования на практике при решении задач. Научить применять основные методы интегрирования при вычислении неопределенного и определенного интеграла.


Задания

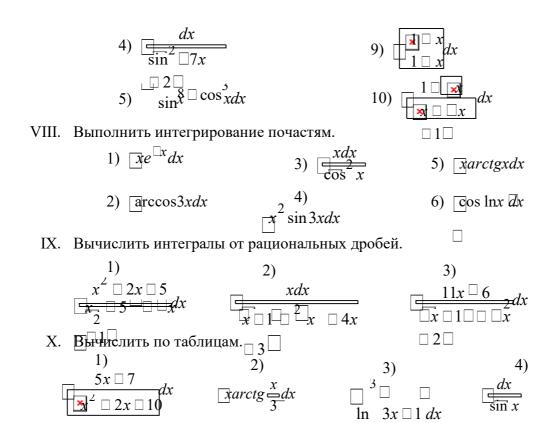
Вариант №1

VI. Найти интегралы, используя табличные формулы и свойство линейности.

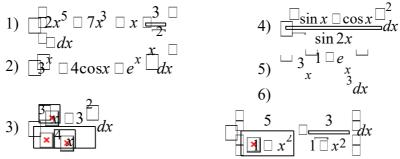


$$6) \quad \frac{tedx}{\sin 2x} dx$$

VII. Найти интегралы методом подстановки. $e^x dx$ 1) $e^x \Box$

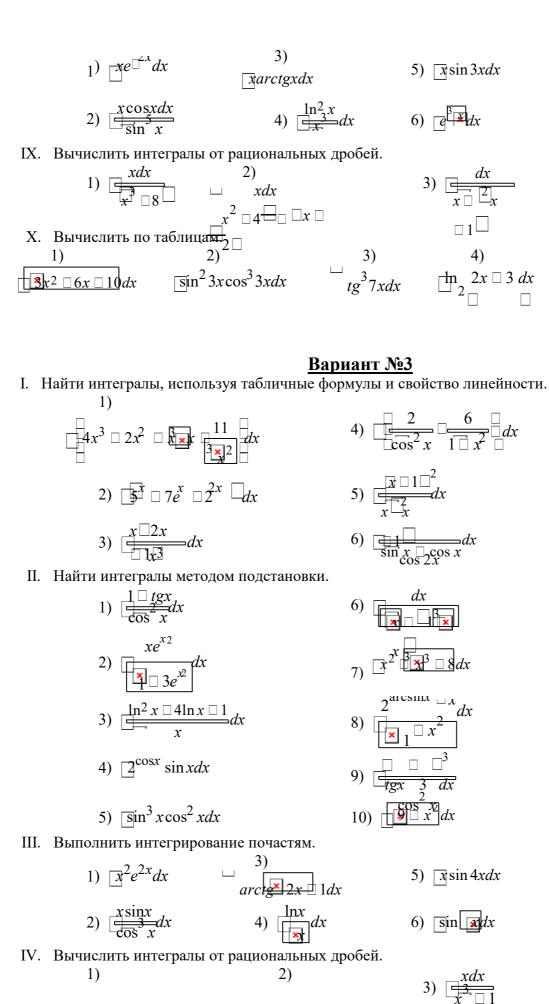

$$e^{x}dx$$
1) e^{x}

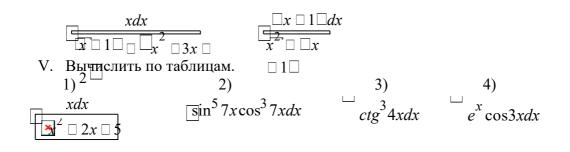
$$2) \quad \frac{dx}{x \ln x}$$


3)
$$xdx$$
 xdx xdx

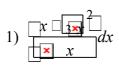
8)
$$\frac{x \Box 4arctgx}{1 \Box x^{2}} dx$$

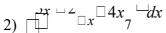
Вариант №2

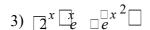

VI. Найти интегралы, используя табличные формулы и свойство линейности.

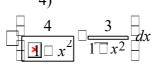


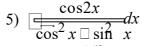
VII. Найти интегралы методом подстановки.

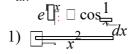

VIII. Выполнить интегрирование почастям.

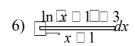


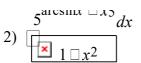


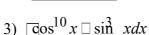

Вариант №4

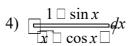

І. Найти интегралы, используя табличные формулы и свойство линейности.

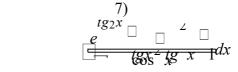


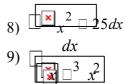




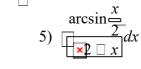

6)
$$tgx \Box 1^{-2}dx$$


II. Найти интегралы методом подстановки.



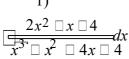


5)
$$\frac{7 \square 3 \sin x}{\cos^2 x} dx$$

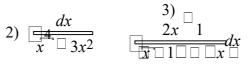


$$10) \quad \boxed{\frac{x \square 2}{3 - 2x 7}} dx$$

III. Выполнить интегрирование почастям.

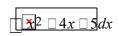

2)
$$\int_{0}^{x} dx dx$$

$$4)$$


$$\ln x dx$$

$$e^{\Box x} \sin 2x dx$$

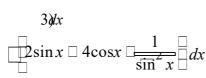
IV. Вычислить интегралы от рациональных дробей.

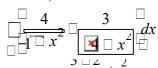


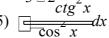
$$2) \quad \frac{dx}{x} \quad 3x^2$$

V. Вычислить по таблицам.

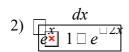
4)
$$e^{\Box x} \cos 2x dx$$


$$\frac{dx}{\cos 2x} \qquad \text{tg}_{3} 3x \square 5 dx$$

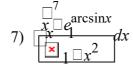

Вариант №5


І. Найти интегралы, используя табличные формулы и свойство линейности.

2)
$$\Box_2^x \Box_3^x \Box$$



II. Найти интегралы методом подстановки.


1)
$$\frac{\sin x dx}{7 \Box 4 \cos x}$$

4)
$$e^{\cos^2 x} \sin 2x dx$$

5)
$$\frac{dx}{x \, \Box \cos^2 \Box \ln}$$

 $6) \quad \boxed{x^3 dx}$

8)
$$\mathbb{C}os^3 \mathbb{Z} \ x \mathbb{I} \mathbb{I} \mathbb{Z} dx$$

9)
$$\frac{e^x dx}{4 + e^x}$$

$$10) \quad \frac{xdx}{4}$$

III. Выполнитьхинтегрирование почастям.

1)
$$x^2 \sin x dx$$

3)
$$\Box \ln^3 x dx$$

3)
$$\ln^3 x dx$$
 5) $\frac{dx}{\cos^3 x}$

$$2) \quad \Box^{x} \Box 3^{\sqcup 2x} dx$$

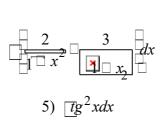
$$4)$$
 $x^2 arctgx dx$

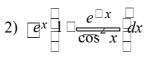
$$6) \quad \boxed{x}^5 \quad \Box \stackrel{\smile}{e}^{x^2} dx$$

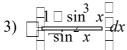
IV. Вычислить интегралы от рациональных дробей.

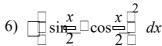
1)
$$\frac{dx}{x^3 \square 8}$$

1)
$$\frac{dx}{x^3 \square 8} \qquad 3x^2 \square 2x \square 1 \\ x \square 1 \square^2 \square x^2 dx$$

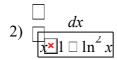

V. Вычислить по таблицам 1
$$=$$
 3) $=$ 4 $=$ 6 $=$ 7 $=$ 6 $=$ 7 $=$ 9


Вариант №6

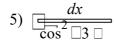

4)

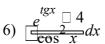

І. Найти интегралы, используя табличные формулы и свойство линейности.

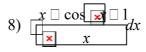
1)
$$\frac{1}{x} \frac{1}{x} \frac{1}{x^3} \frac{1}{x} dx$$

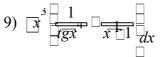


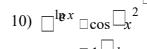


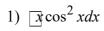

II. Найти интегралы методом подстановки.



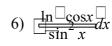




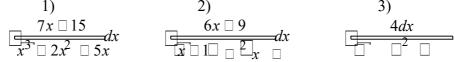


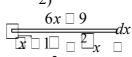


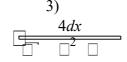
III. Выполнитьхинтегрирование почастям.

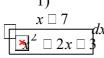


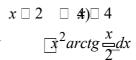
3)
$$\frac{\ln x}{x} dx$$

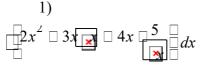

3)
$$\frac{\ln x}{2} dx$$
 5) $x^2 e^{-x} dx$

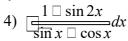

2)
$$\int \frac{1}{x} dx$$
 $\int \frac{1}{x} dx$ $\int \frac{1}{x} dx$ $\int \frac{1}{x} dx$


$$u$$
 4) $arctg3xdx$

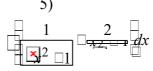

IV. Вычислить интегралы от рациональных дробей.

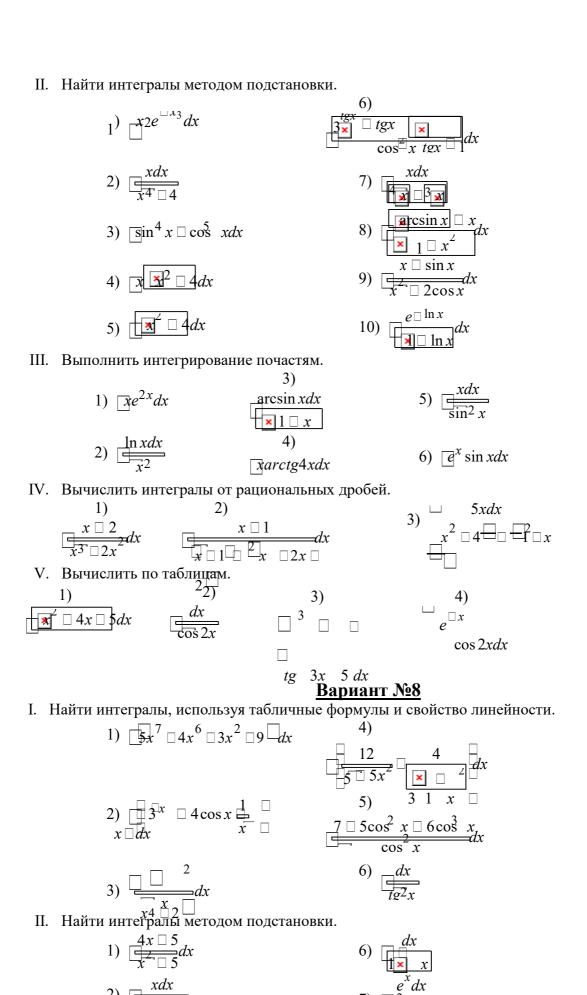



$$\begin{array}{c}
2) \\
\sin^4 \overline{2}x \, \Box \, 3 \overline{d}x
\end{array}$$


$$\frac{dx}{\cos |x|} dx$$

Вариант №7


І. Найти интегралы, используя табличные формулы и свойство линейности.



8) $e^{\cos x} \sin x dx$

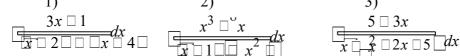
4)
$$\Box \cos 7x \Box e^{6x} \Box dx$$

9) $\Box \cos^7 x \Box \sin^3 x dx$

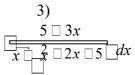
$$5) \quad \frac{\ln^2 x}{x} dx$$

10) $\frac{dx}{\sin x}$

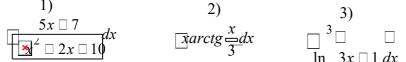
III. Выполнить интегрирование почастям.

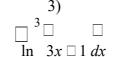

1)
$$xe^{4x}dx$$

2)
$$\int \ln x dx$$

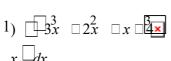

4)
$$\frac{xdx}{\sin^2 x}$$

4)
$$\frac{xdx}{\sin^2 x}$$
 6) $\frac{x}{\sin^2 x}$

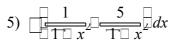

IV. Вычислить интегралы от рациональных дробей.



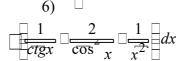
V. Вычислить по таблицам.4



4)
$$\frac{dx}{\sin x}$$

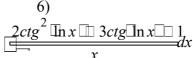

Вариант №9

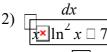
І. Найти интегралы, используя табличные формулы и свойство линейности.

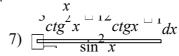


1)
$$3x = 2x = x$$
 $4 = dx$
2) $1 = 2 = 4 = dx$
5) $1 = 5 = dx$
 $1 = 5 = dx$

2)
$$\frac{1}{e^x} = \frac{2}{x} = \frac{4}{\sin^2 x} = dx$$




3)
$$\Box tgx \Box ctg_x^2 \Box dx$$



II. Найти интегралы методом подстановки.

1)
$$\Box 4^{\Box \sin x} \cos x dx$$

2)
$$\frac{dx}{x \ln^2 x \, \Box \, 7}$$

$$e^{\arcsin x \, dx}$$
3)
$$\sin^3 x \, dx$$
4)
$$\cos^{15} x$$

8)
$$\sqrt{3}$$
 $\sqrt{9}dx$

4)
$$\frac{\sin^3 x dx}{\cos^{15} x}$$

5)
$$\frac{xdx}{\cos^2 4x}$$

10)
$$xdx$$
 $x^{4} \square 16$

III.	Выполнить интегриро	вание почаст	MR.		,
	1) $x^2 e^x dx$	3) In ²	xdx	5)	$\sin^2 x dx$ $\cos^2 x$
	2) $arcsin x dx$	4) x si	n 3 <i>xdx</i>	6)	$\sin \frac{3}{x} dx$
IV.	Вычислить интегралы	от рационал 2)	ьных дроб	бей. 3)	
	,	,		,	7 dx
	$ \begin{array}{c c} 9 \square x \\ \hline x \square 1 \square \square \square x^2 \end{array} $	$x \square 1 \square^3$	$\frac{dx}{dx}$	$\frac{1}{2x^2}$	$\frac{7dx}{\Box 1} \Box \Box x^2$
V.	Вычислить по таблиц	ам. 3 🗌	2)	$_{\sqcap 4}\square$	4)
***	$\overline{z} = 4x \oplus 5dx$ 2	$\frac{dx}{\cos 2x}$			$\Box x$
		COS 2.x			$\cos 2x dx$
			tg 3x 3 Bapua	5 dx	
I. F	Найти интегралы, испол	тьзуя табличн			_
	1)		4	$\cos x$	= dx
	$3x^7 \square 2x $	$\Box 2 \Box dx$		$\cos x$	$\exists \sin x$
	2) $\int dx = 4tgx$		5	$e^x ex$	$\int_{-\infty}^{\infty} e^{-2} dx$
	3) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} dx$		6	$) \boxed{\begin{array}{c} \boxed{1} \\ 1 \end{array}} x$	$= \Box x \Box dx$
II.	Найти интегралы мето	олом подстан	овки.		
	<u>.</u>			$\arcsin^2 x$	$\exists x \sqcap 1$
	1) $\Box x \Box t g x dx$		6)	$\arcsin^2 x$	$\frac{dx}{dx}$
	$2) \qquad x \qquad \qquad x$		7)	$\frac{dx}{2}$	<u>x</u> 1
	3) $\frac{4^{tgx} \Box 3tg^2x}{\cos^2 x}$	$= \frac{1}{dx}$	8)	$\frac{\sin x}{\cos x}$	dx
	4) $\frac{xdx}{\cos x}$		9)	$\frac{1}{3}$ 2 2 4 dx	
	5) $\subseteq \sin^7 x \square \cos^5 x$	xdx	10)	e ¥ □ si	$\int_{C}^{\infty} dx$
III.	Выполнить интегриро	вание почаст	MR.		
	$1) x2^{\square 3x}dx$		_	5)	
	1) $\lambda Z = u\lambda$	3) $\sqrt{x} \ln x$	n ² xdx	5)	$x \sin 5x dx$
	$2) xtg^2xdx$	4) [arc	etg4xdx	6)	$e^{-x}dx$
IV.	Вычислить интегралы	от рационал	ьных дроб	бей.	
	1) $\frac{x^5}{x^5}$ dx	2)	_	3)	x □ 18 ,
	$\neg x \sqcup 21$		$\Box x \Box$	$\frac{8x}{\Box x}$	$\frac{1}{\Box^2} \Box x$
		4 🗆		$\Box \alpha \Box$	

V. Вычислить по таблицам.

1) 2) 3) 4)
$$xdx$$

$$\sin^5 7x \square \cos^3 7x dx \qquad \Box ctg^3 4x dx \qquad \Box e^x \cos 3x dx$$

Вычислить интегралы:

2.
$$\underbrace{\frac{1}{0}}_{0} \frac{dx}{1 \square x^{2}}$$
 (other: $\frac{\square}{4}$).

3.
$$[3(x \square 1)^2 dx$$
 (other: 1).

4.
$$\sin 3x dx$$
 (other: $\frac{1}{3}$).

5.
$$\int_{1}^{5} x dx$$
 (other: $\ln \boxed{3}$).

6.
$$\cos^2 = x dx$$
 (other: $\frac{1}{4}$).

7.
$$\frac{dx}{\sin^2 x \cdot \sin^4 x}$$
 (other: $\frac{4}{3}$).

8.
$$\cos x \cos 5x dx$$
 (ответ: 0).

ВЫЧИСЛЕНИЕ ОПРЕДЕЛЁННЫХ ИНТЕГРАЛОВ С ПОМОЩЬЮ ПОДСТАНОВКИ

Теорема. Если
$$f(x) \square C \square a, b \square, t \square C^1 \square \square$$
, причём $x \square \square (t)$ отобранжиет отрезок $\square \square$, \square на отрезок $\square a, b \square$, $\square (\square) \square a, \square (\square) \square b$, $\square (t) \square 0$,

$$\prod_{a}^{b} f(x)dx \prod_{\Box} f(t) \Box (t)dt.$$

Вычислить интегралы:

1.
$$\int_{1}^{e} \frac{\ln^2 x}{x} dx$$

(ответ:
$$\frac{1}{3}$$
).

$$2. \int_{3}^{8} \frac{x}{x} dx$$

(otbet:
$$\frac{32}{3}$$
).

$$3. \int_{1}^{3} x^{3} dx$$

(ответ:
$$\frac{464}{15}$$
).

$$4. \quad \cos^3 3x \sin 6x dx$$

(ответ:
$$\frac{2}{15}$$
).

5.
$$tg^{4}xdx$$

$$\frac{1}{4}$$

$$6. \frac{dx}{1}$$

(otbet:
$$\frac{3\square \square 8}{12}$$
).

6.
$$\int_{1}^{2} dx$$

(OTBET:
$$\ln \frac{3 \square 2}{\square \square}$$
).

$$7. \ \Box_{0}^{\square/2} \frac{dx}{2\overline{\cos x} \square 3}$$

(ответ:
$$\frac{2}{3} \operatorname{arctg} \frac{1}{3}$$
).

вычисление определённых интегралов ПУТЁМ ИНТЕГРИРОВАНИЯ ПО ЧАСТЯМ

Вычислить интегралы:

xdx

(ответ:
$$\frac{e \square 2}{e}$$
).

(ответ:
$$\frac{e^2 \Box 5}{\Box 4}$$
).

$$xdx$$

$$\overline{6}$$
3. $x \cos 3x dx$

$$0$$

(ответ:
$$\frac{\square \square 2}{\boxed{18}}$$
).

$$4. \int_{0}^{\Box} x^{2} \sin x dx$$

(otbet:
$$\Box$$
 2 \Box 4)

5.
$$\frac{1/2}{\operatorname{arccos}} x dx$$
 (other: $\frac{\square}{2}$).

6. $\frac{\square^2}{4}$
7. $\frac{\square^2}{\operatorname{cos}(\ln x)} dx$ (other: $\frac{\square^2}{2}$).

Методические указания по выполнению заданий

Для выполнения предложенных заданий на практических занятиях необходимо изучить материал лекции по данной теме. Основные определения и теоремы. При этом следует учитывать, что предложенный в лекции материал частично опирается на некоторые разделы из школьного курса математики, которые также желательно было бы повторить для хорошего и полного усвоения дисциплины.

Практическое занятие Тема занятия «Комплексные числа и действия с ними»

Цель занятия: расширить понятие числа, ввести понятие комплексного числа и действий над комплексными числами в алгебраической, тригонометрической и показательной формах.

Задания

	гбраическая ф	рорма компл	ексного ч	исла.	
1 ′	е множества т .e z □ 2; б) Im		сти задан	отся условиями:	
II) Ot	метить на	плоскости	точки,	изображающие	следующие
компле	ксные числа:	$\begin{bmatrix} i & & & \\ 2;1; & 1 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2. Вычисл	ить: $i^5; i^6; i_8$	$\frac{1}{i}$; *2011.			
3		$\Box^{\tilde{i}}_{\tilde{i}} \Box_{\tilde{i}}^{\tilde{i}} \Box^{\cdots}$			
. Найти с 4. Найти 2	$z_1 \square z_2; z_1 \square z_2$	z ; $z = \frac{z^{z_1}}{z_2}$, eq	сли		
1) $z_1 \square 5$	$z_{\underline{i}} = 1 \square 2i;$	2			
$z_1 \square 3 \square$	$\Box 2i, z \Box 2\Box$	$\exists i$			
$ $ 3) $z \square \square$	$2i \square 6, z \square$	7 □ 3 <i>i</i>			
5. Найти ч	исло, сопряж	енное данно	му:		
$1) 6^{4};$	2				

≥ 2) □ 4 : 1 ; ;
$4) \square 2i$
$5) \square \square \square \square \square \square \square \square \square$
$\left 6\right _{i}^{1}$.
$7) 115i^2;$
8) $\Box 4i^5$;
9) \Box 3 \Box 5 i ;
$10) \square 1 \square i \square_3$
1 1 1 1 1 1 1 1 1 1
•
$12) \frac{1 \Box i}{i \Box 5}$
<i>t</i> □ 3 6. Найти:
1) действительную часть комплексного числа $z extstyle \frac{(2 extstyle i)^3}{3 extstyle 4i};$
abla i
2) мнимую часть комплексного числа $z \Box \Box \Box \Box \Box \Box$.
7. Представить число в алгебраической фо \mathbf{p} м $\dot{\mathbf{e}}$:
$1) \frac{2 \square 3i}{i};$
$2) \square 1 \square \overset{9}{i};$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
8. Выполнить действия:
$1) \frac{3 \Box i}{3 \Box i} \Box \frac{3 \Box i}{3 \Box i}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$(1\Box i)$ $\Box 1$
$4) \frac{(1 \Box i)^{1000}}{4}$
$(1 \square i)^{998}$
9. Найти значение выражения:
$1) z^4 \square iz^3 \square \square 1 \square \qquad ^2 \square 3z \square 1 \square 3i \text{ npiz } \square 2 \square 3i$
$2)$ $\Box z$ $\Box^2 z$ $\Box^2 \overline{z}$ \Box \Box \Box \Box \Box при z \Box \Box ($3i$
$rac{\Box}$ 1).

10. Считая x и y действительными числами, решить уравнение $\Box \Box i \Box x \Box \Box \Box 2 \Box 5i \Box y \Box \Box 4 \Box 17i$
$11.$ Решить уравнения: $1)x^2 \Box x \Box 11 \Box 0, 2) z^2 \Box 6z \Box 13 \Box 0.$
12. При каких действительных значениях х и у комплексные числа
$z_1 \Box 2x^2 \Box 3i \Box 1 \Box yi_1 z^2 \Box y \Box x i$ являются сопряженными?
13. При 3 ка 2 их действительных значениях x и y комплексные числа
$z_1 \square x$ и $z \square y \square y \square i \square$ являются $\square 11 \square 3i \square pu 10$ аких действительных значениях x и y комплексные числа
$ z_1 \square 4i \square 2xy \square xyi \not z^2 \square y^2 i \square x^2 \square$
3 равны?
1.2Тригонометрическая форма комплексного числа.
1. Найти модуль и аргумент комплексного числа: $i, \Box 1; \Box^{-i}; 2$
2; Заданы ли; следующие комплексные числа в тригонометрической форме:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} \mathbf{x} \\ 2 \end{bmatrix}$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
▼ 4> 5 □ □ □ □ i aia 2 □ □
$4) \ 5 \begin{array}{ c c c c c c c c c c c c c c c c c c c$
×
3. Представить числа в тригонометрической форме:
$z_1 \square i; z_2 \square \square 2; {}_{3}z \square \square 2i; {}_{4}z \square 2 3 \square 2i; z \square 1 \square_6 i; z \square 5.$
4. Вычислить, используя тригонометрическую форму комплексного числа:
10
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{12}{2}$ $\frac{12}{12}$;
$\frac{2}{\cos^{5}\Box} = i \sin^{5\Box}$
$3) \frac{(1 \square i)^5}{1 \square i};$
$\begin{vmatrix} 3 \end{pmatrix} 1 \square i$
5. Найти все корни n -й степени из числа z :
$\begin{bmatrix} 1 \end{bmatrix} z \square \square 3 n \square 2$
$2) z \square \square i, n \square 4;$
$ 3)_{\mathcal{Z}} \oplus 1_{\mathcal{C}}, \mathcal{H} \oplus \mathcal{A}$
4) , .;
6. Найти все корни n -й степени из числа z
интерпретацию, если: и дать геометрическую
1) $z \square \square 1, n \square 2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
7. Решить уравнение: $z^4 \square 1 \square 0$.
8. Данные числа z_1 и z_2 представить в показательной форме и
выполнить указанные действия над ними а) $z_1^2 z_2$, б) z_2^2 , если
$\begin{bmatrix} z_1 & \Box & \Box & 2 & \Box & i & 2 \\ z_2 & \Box & & B & \Box & i & 8 \end{bmatrix}$
9. Вычислить значения функции \Box $= e^{\tilde{t}}$, где a) $z_1 = 2 = 2 = 3$ $= 2$ $= 1 = 2$ $= 2$ $= 1 = 2$
Методические указания по выполнению заданий

Для выполнения предложенных заданий на практических занятиях необходимо изучить материал лекции по данной теме. Основные определения и теоремы. При этом следует учитывать, что предложенный в лекции материал частично опирается на некоторые разделы из школьного курса математики, которые также желательно было бы повторить для хорошего и полного усвоения дисциплины.

Практическое занятие Тема занятия «Дифференциальные уравнения»

Цель занятия: научить студентов находить общие и частные решения ДУ с разделяющимися переменными; находить общие и частные решения ДУ второго порядка с постоянными коэффициентами; составлять ДУ для решения задач прикладного характера. Показать, что дифференциальные уравнения являются универсальным

средством изучения многих явлений природы, к ним приводят разнообразные задачи естествознания, медицины, экономики, социальной сферы и др.

Задания

Задача 1

Решить дифференциальные уравнения:

- 1) $y^{\square}e^{x^{\square}}y\ln^2 y$;
- 2) $xtgydx \square (x^2 \square 2) dy \square$;
- 3) $y \stackrel{\square}{=} \frac{x \square y}{y \square x}$;
- 4) $xy \square y \square (x \square y) \square nx$
- 5) $xy \square xe^{\frac{y}{x}} \square y$;
- 6) $y = \cos x \square \square y \sin x \square$
- $\begin{array}{c} 2x; \\ 7) \ x^2y \square \ 2xy \square \ 2x^5y; \end{array}$
- 8) $x(y \Box y) \Box e^{x}$;

9)
$$y^{-\frac{2}{2}}$$
;

- 10) $yy \square \square$;
- 11) y x x x;

12)
$$y \stackrel{\square}{=} \frac{2x}{x^2} y \stackrel{\square}{=} 2x;$$

- 13) $3xdy \square (y \square 6x^2)dx$;
- 14) $\Box 4y \Box 3 \Box y \Box \Box y^2 1;$
- $15)x \square y \square 2\ln x \square \square dy \square 2y dx;$

(Ввести замену $z \square \ln y \square 2 \ln x \square 1$).

Задача 2

Решить линейные однородные дифференциальные уравнения 2-го порядка:

- $1)y \square \square 3y^{\square} \square 2y \square$
- $2) y \square \square 16y \square 0;$
- 3) $y^{\square\square} 7y^{\square}$
- 4)y \Box 6y \Box 9y \Box 0;

5) y = 3y = 8y = 0; y = 3y = 0, y = 0, y

Задача 3

Решить линейные неоднородные дифференциальные уравнения 2-го порядка:

$$\downarrow \hspace{-0.5em} \downarrow \hspace{-0.5em} y \square^{-25y} \square 6e^{2x} ;$$

$$5)$$
 y $4y$ $4x$ 10 , при

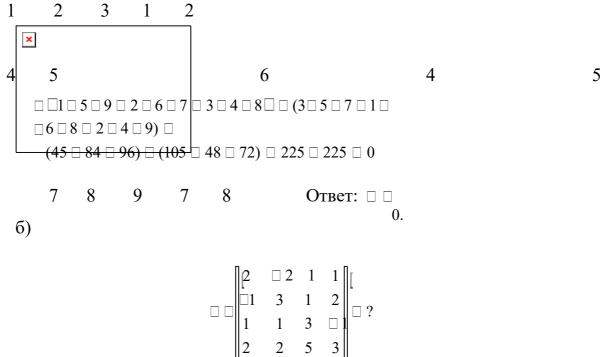
$$2)$$
 $y \Box 5y \Box 6y \Box x^2 \Box$ $y(0) \Box 4, y \Box (2) \Box \frac{19}{4};$ \Box $y(1) \Box 4$ $y \Box 6y \Box 9y \Box 4e^{-3x}$, при $y(1) \Box 4$ $y(0) \Box 4$ $y(0$

Решить методом вариации произвольной постоянной:

1)
$$y \square 3y \square 2y \square \frac{1}{2 \square e^{\square x}};$$

2) $y^{\square 25y} \square 6e^{2x}.$

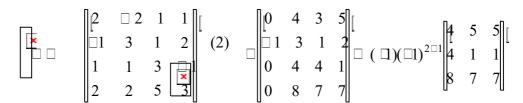
Методические указания по выполнению заданий

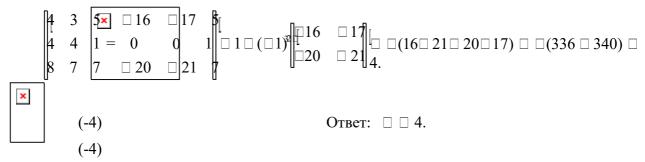

Для выполнения предложенных заданий на практических занятиях необходимо изучить материал лекции по данной теме. Основные определения и теоремы. При этом следует учитывать, что предложенный в лекции материал частично опирается на некоторые разделы из школьного курса математики, которые также желательно было бы повторить для хорошего и полного усвоения дисциплины.

Ниже приведены образцы решений с подробным разбором некоторых заланий

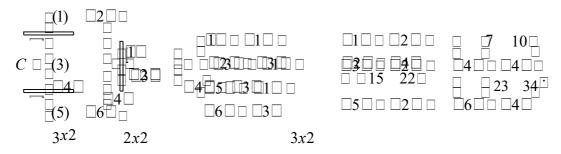
Тема 1. МАТРИЦЫ И ОПРЕДЕЛИТЕЛИ

1) Вычислить определители: a)
$$\Box$$
 $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ \Box ?


Этот определитель вычислим по правилу диагоналей. Приписываем справа к определителю первый и второй столбцы. Перемножаем элементы, стоящие на главной диагонали и складываем это произведение с аналогичными произведениями элементов, стоящих на диагоналях, параллельных главной. Затем к произведению элементов, стоящих на побочной диагонали, прибавляем аналогичные произведения элементов, стоящих на диагоналях, параллельных побочной. Затем от первой суммы вычитаем вторую. Это и будет искомый определитель.

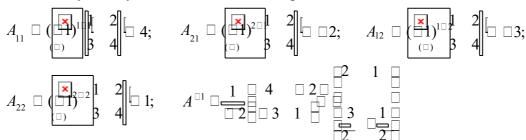

Его найдем разложением по первому столбцу, но сначала с помощью свойств

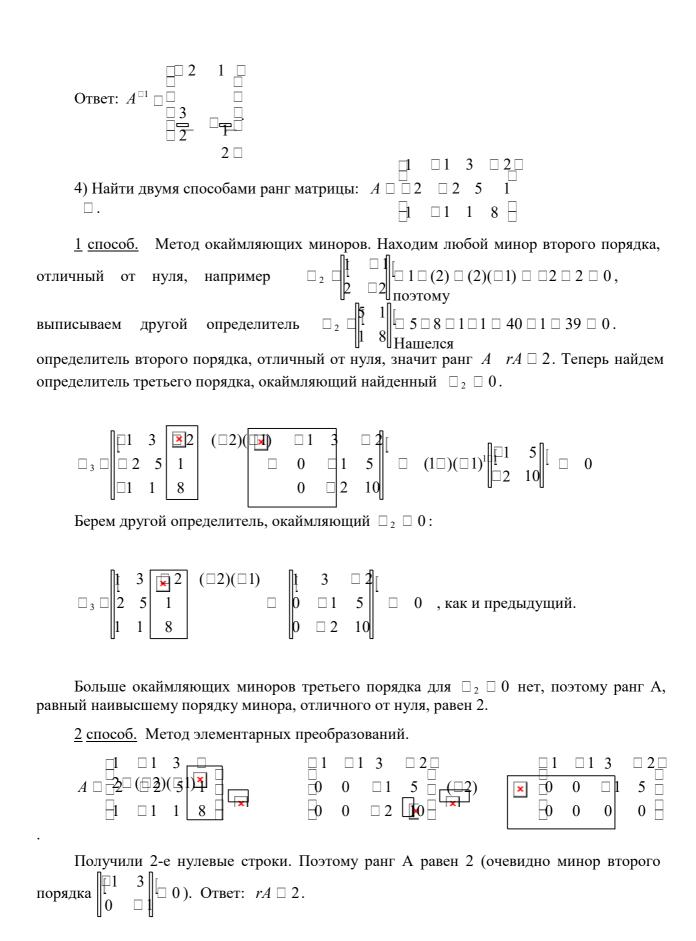
определителясделаем нули в этомстолбце везде кроме элемента, равного -1.


Для этого элементы в т о р о й строки умножим на 2 и прибавим к соответствующим элементам п е р в о й строки; элементы в т о р о й строки прибавим к соответствующим элементам т р е т ь е й строки; элементы в т о р о й строки умножим на 2 и прибавим к соответствующим элементам ч е т в е р т о й строки. Эти действия записываем так:

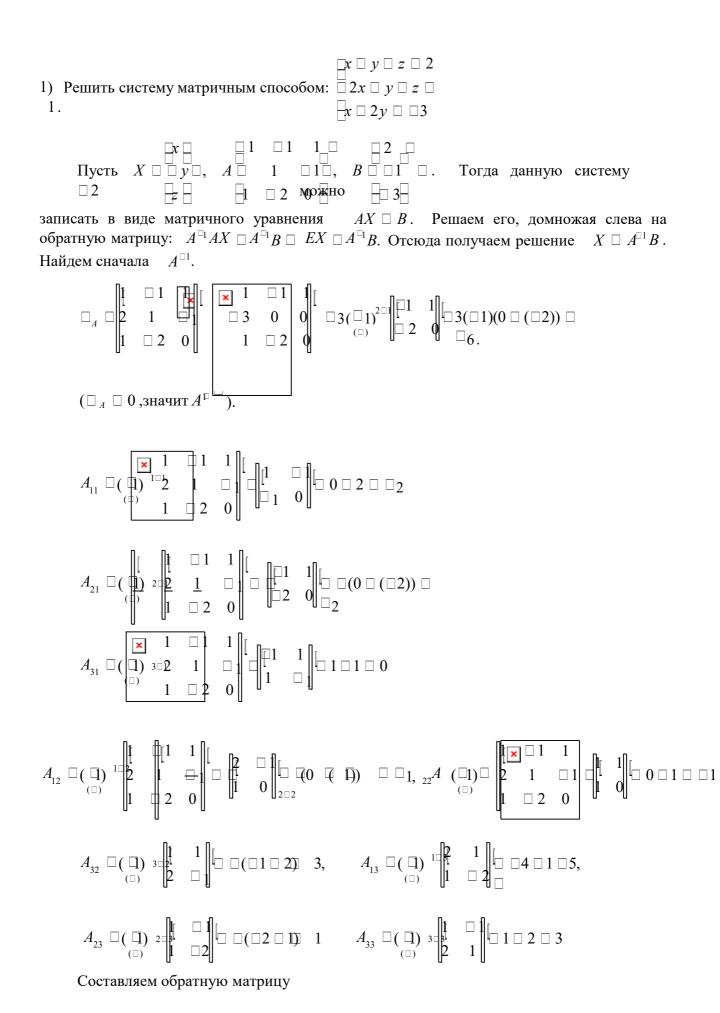
Разложив определитель 4-го порядка по 1-ому столбцу, свели его вычисление к нахождению одного определителя 3-его порядка, который можно вычислить по правилу диагоналей, разобранному выше. Можно дальше применить свойства определителя и свести этот определитель к одному определителю 2-го порядка. Продолжаем делать нули теперь уже во второй строке, умножая элементы третьего столбца на (-4) и прибавляя к первому и второму столбцам:

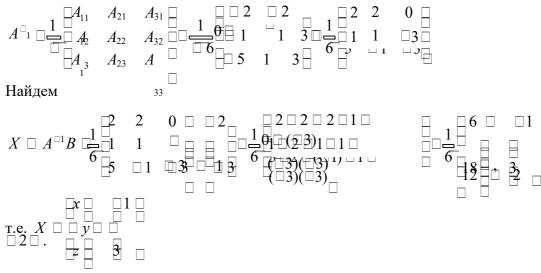
2) Умножить матрицы:

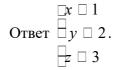

Произведение матриц получили, умножая элементы строк первой матрицы на соответствующие элементы столбцов второй матрицы и складывая их.

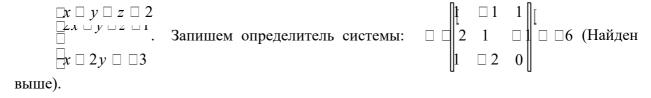

OTBET:
$$C \square \square 15$$
 $22\square$

3). Найти обратные матрицы:



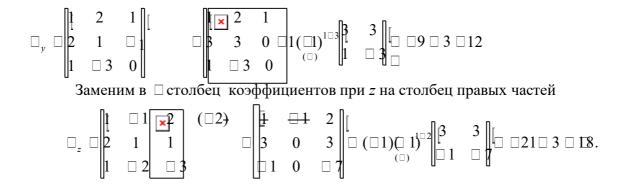

 \square \square 0, значит, существует $A^{\square 1}$. Находим алгебраические дополнения:

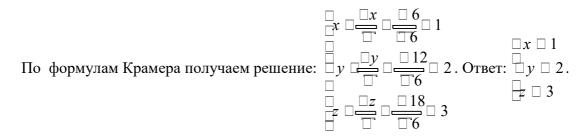

Тема 2. СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

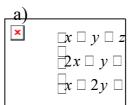


Проверка. Подставим найденное решение в исходную систему:

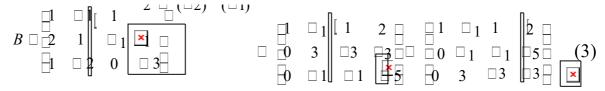
1-2+3=2 (истина), $2\cdot 1+2-3=1$ (истина), $1-2\cdot 2=-3$ (истина).




2) Решить систему методом Крамера. Возьмем эту же систему и решим её с помощью определителей.


Заменим в \Box столбец коэффициентов при x на столбец правых частей

Заменим в \Box столбец коэффициентов при y на столбец правых частей


3. Решить системы методом Гаусса:

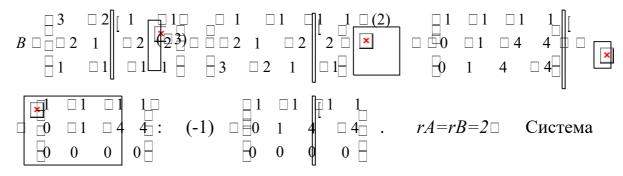
Выписываем расширенную матрицу

приводим ее или к треугольному виду, или к виду трапеции (как получится).

xyz

число неизвестных n=3 и равно рангу системы, то система имеет единственное решение. По полученной матрице восстанавливаем систему

последнего уравнения z=3, из второго находим y=5-z=5-3=2 . Подставляя в


первое уравнение найденные y=2 иz=3, находимx=2+y-z=2+2-3=4-3=1. Ответ: $\begin{bmatrix} x & \Box & 1 \\ y & \Box & . \\ \vdots & \vdots & 3 \end{bmatrix}$ 6) $\begin{bmatrix} x & y & z & \Box & 2 \\ 2x & y & z & \Box & 1 \\ \vdots & \vdots & 2y & \Box & 2z & \Box & 1 \end{bmatrix}$ 8 $\begin{bmatrix} 1 & 2 & \Box & (-1) & \Box & (-1)$

rA=2, rB=3. Следовательно, по теореме Кронекера-Капелли система несовместна (т.е. не имеет решения). Выпишем уравнение, соответствующее последней строке полученной матрицы: $0 \square x \square 0 \square y \square 0 \square z \square 2$, что невозможно.

Ответ: система не имеет решения.

B)
$$\begin{array}{c} \exists x \Box 2y \Box z \Box \Box 1 \\ \Box 2x \Box y \Box 2z \Box 2 \\ \hline x \Box y \Box z \Box 1 \end{array}$$

Записываем расширенную матрицу:

совместна.

Число неизвестных n=3 \square r=2 \square Система имеет бесконечное множество решений. n-r=3-2=1 \square Одна свободная переменная, пусть это будет z, тогда x,y — базисные (базисных неизвестных столько, каков ранг системы, то есть сколько ненулевых строк остается в последней матрице).

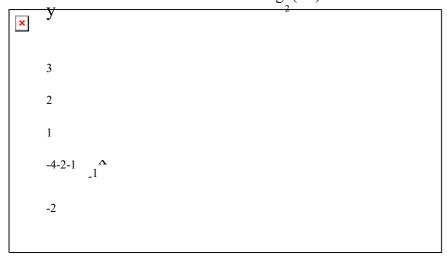
	Запишем	и систему, со	ответствующу	ую получен	ной	матрице	
-	Идя снизу	вверх, выра	ажаем базиснь	ие неизвест	гные	через с	свободную <i>z</i>
гИ.	второго	уравнения	выражаем	y = -4 - 4z,	ИЗ	первого	уравнения
<i>x</i> = <i>y</i> +	z+1=(-4-4	(z)+z+1=					
:	= -4-4 z+z+	-1 = -3 - 3z.					
(Общее рег	пение:					
	$ \begin{array}{c cccc} x & 3 & 3 \\ y & 4 & 4 \end{array} $						
-	Из общего	решения мо	эжно получит	ь любое час	стное	е решени	те. Пусть $z=$ -
<i>2</i> , тог	гда получи	им частное р	ешение: <i>x=-3-</i>	3 (-2)=-3+6	5=3;	<i>y</i> =-4-4	(-2)=-4+8=4.
		Частно	е решение:				
	$ \begin{array}{c} $						
]	Выполним	и проверку с	общего решен	ия. Для это	ого п	одстави	м найденные
выра	жения для	<i>х,у,z</i> в уран	внения исходн	ой системь	ы:		
	2) 2(3 2) 6z 3) (3 3	$3z) \square 2(\square 4 \square 4 \square 4 \square z $	□ 1 □ □ 1 □ ucmuна □ 4z) □ 2z □ 2				Ответ:
	$\Box 4 \Box 4z$.						

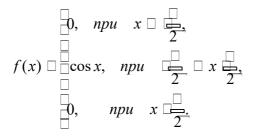
Тема 3. ПОСТРОЕНИЕ ГРАФИКОВ ФУНКЦИЙ

1) Построить график функции путем сдвигов и деформаций

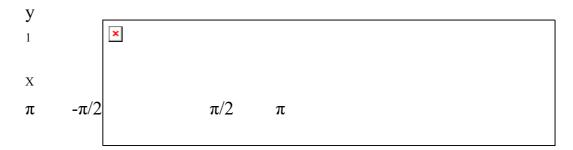
$$y \square \log_2(1\square x) \square 2$$

2. Симметрично отображаем этот график относительно оси OY и получаем график функции $y \square \square$ (на рис.2 — сплошная линия).



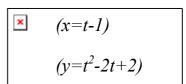

Рис.2

- 3. Сдвигаем этот график на одну единицу вправо и получаем график функции $y \, \Box \log_2 (1 \Box \, x)$ (на рис.2 пунктирная линия).
- 4. Сдвигаем этот график на 2 единицы вниз и получаем график функции $y \square \log_2(1\square x) \square 2$ (на рис.2 штрих-пунктирная линия), что и будет графиком данной функции.
- 2) Построить график функции, заданной несколькими аналитическими выражениями:



$$f(x) \square = \begin{cases} \cos x, & npu & \text{ if } \square = \frac{\pi}{2}, \\ 0, & npu & \text{ if } \square = \frac{\pi}{2}. \end{cases}$$

Запишем данную функцию по интервалам возрастания аргумента х:


Графиком f(x) при x робудет часть оси OX, при x робудет часть оси OX при x робудет часть оси OX часть косинусоиды, затем при x снова часть оси OX

3) Построить график функции, заданной параметрически:

График функции, который надо построить, проходит через точки с координатами $\Box x \Box t \Box, y \Box t \Box \Box$. Чтобы найти координаты этих $\Box x \Box x(t)$ точек составим таблицу связи аргумента t и координат точек (x,y) в зависимости от t .

×	t	-	-	0	1	2	3	4
		2	1					
	X	-	-	-	0	1	2	3
		3	2	1				
	у	1	5	2	1	2	5	1

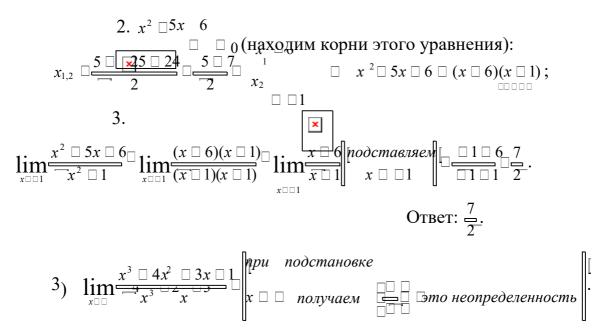
×	()						0						
	Для	и пост	гроени	я грас	рика	берем	две	послед	 ние (строки	таблі	ицы и	I	
OTM	иечаем		-	-	-	-				-				
	5), (3,10									, (, ,	,, (, ,	, , , ,	,	
(2,5	×	<i>)</i> , Roo _j	эдина	DI KOT	эрых п	шлодл	тел в с	ТОЛОЦ						
	у					E								
						5								
				-	3 0) 3				X				
	Затем	coe	циняем	пол	ученні	ые	точки	крив	ой (в дан	ном (случає	;	
ПОЛ	іучилас	ь пара	бола і	вида ј	$y \square x^2$,	смеще	нная і	на оси	OY	на 1 в	верх, т	о есть	,	
<i>y</i> [$1 x^2 \square 1$).													
	4)Πoc	троит	ь граф	ик фу	нкнии	залан	іной в	попяр	ной с	истем:	е коор	линат		
	$a \square 1 \square c$	-						-			-			
C	си						_							
ОТК	ладыва	ем вм	есто ед	циниц	a, 2a,	3а и	т.д. За	носим	в таб	лицу з	начени	1 Я 🗌	,	
выч	нисленн	іые дл	я угло	в 🗆 🗆	\square_0 ,	$\begin{bmatrix} y \partial a \end{bmatrix}$	обне е							
360							a	=						
														_
×		0	3 0 ⁰	6 00	$9 20^{0}$	$\frac{1}{50^0}$	$\frac{1}{80^{0}}$	$\frac{1}{10^0}$	$\frac{2}{40^0}$	$\frac{2}{70^{0}}$	$\frac{2}{00^0}$	$\frac{3}{30^0}$	$\frac{3}{60^{0}}$	
		2	1	1	1 ,5	0	0	0,1	0,5	0	1	1	1	
	a	,9	,5		,5	,1		,1	,5		,5	,9		
														_
										ого ради				7
-	под угл оим точк										-		1	
l	9 Тиая точ								1	, ,	,			
	ной <i>1,9а</i>							акім ^н а ў	दमा <i>8</i> त्र	уртыла	зы ваем _н	axbern	Ķ	
точ	ку их пер	есечен	оте, ки	и будет	г иском	ая точк	а и т.д.							

откладываем вместо единиц a, 2a, 3a и т.д. Заносим в таблицу значения \Box , вычисленные для углов \Box \Box 0, 360 \Box \Box yдоощее a

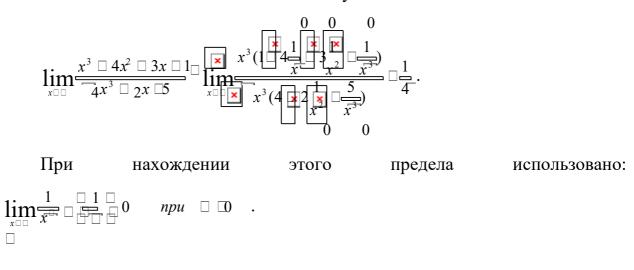
Тема 4. ПРЕДЕЛ И НЕПРЕРЫВНОСТЬ ФУНКЦИЙ

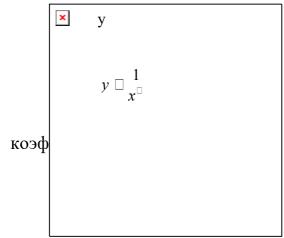
Вычислить пределы функций:

1)
$$\lim_{x \to 1} \frac{x^2 + 5x + 1}{\overline{x^2 + 3} + 2x + 3} = \lim_{x \to 1} \frac{1 + 5 + 1}{x + 1} = \frac{1}{6} = \frac{1}{2}$$
 Other:

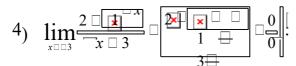

$$\Box \frac{1}{2}$$
.

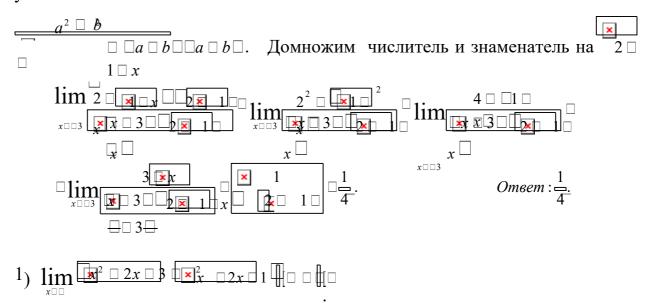
 \Box .


$$2$$
) $\lim_{x=1} \frac{x^2-5x-6}{x^2-1}$ получаем $\lim_{x=1} \frac{x^2-5x-6}{x^2-1}$ получаем $\lim_{x=1} \frac{x^2-5x-6}{x^2-1}$ Чтобы


избавиться от такой неопределенности следует и в числителе, и в знаменателе выделить "ноль", то есть множители , которые и дают нули. В данном примере (x+1) обращается в θ при x=-1, его и будем выделять , чтобы потом сократить.

1.
$$x^2 \square \square \square \square \square$$
;


Чтобы избавиться от такой неопределенности, следует и в числителе, и в знаменателе вынести за скобки наивысшую степень x.



Получили в ответе отношение


при старших степенях x.

Для решения следует_□ звоспользоваться формулой сокращенного умножения

Для решения применяем тот же прием, что и выше: домножаем числитель и знаменатель на сумму этих корней, чтобы получить разность квадратов:

Как и в примере 3) вынесем за скобки x в первой степени, причем

Ответ: 2.

6)
$$\lim_{x=0} \frac{\sin 15x}{\overline{tg} 13x}$$
 $\bigcirc 0$; применяем первый замечательный предел: $\lim_{u=0} \frac{\sin u}{\overline{u}}$ $\bigcirc 1$ $\lim_{x=0} \frac{\sin x}{\overline{u}}$ $\bigcirc 1$ $\lim_{x=0} \frac{\sin x}{\overline{u}}$ $\bigcirc 1$ $\lim_{x=0} \frac{15x}{13x}$ $\bigcirc 1$ $\lim_{x=0} \frac{15x}{13x}$ $\bigcirc 1$.

7)
$$\lim_{x \to 0} \frac{3x + 4}{3x + 2} = \lim_{x \to 0} \frac{3x + 4}{3x + 2} = \lim_{x \to 0} \frac{x + 3}{3x + 2} = \frac{3}{3} = 1$$
, то имеем неопределенность

Применяем второй замечательный предел: $\lim_{u=0} \mathbb{I} u^{\frac{1}{u}} = \mathbb{I}$. Выделяем в основании степени "единицу" так: прибавляем I и вычитаем I.

$$3x \square 4$$
 $\square 1$ $\square 1$ $\square 3x \square 4$ $\square 3x \square 2$ $\square 1$ \square

Подставляем это в пример:

$$\lim_{x \to 0} \frac{3x + 4}{3x + 2} = \lim_{x \to 0} \frac{6}{3x + 2} = \lim_{x \to 0} \frac{6$$

функцию с основанием меньше единицы в бесконечно большой степени, которая стремится к нулю [=0].

Исследовать на непрерывность и построить график функции:

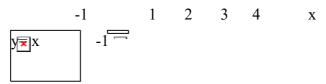
Для исследования функции на непрерывность воспользуемся тем, что функция v = f(x) непрерывна в точке x_0 , если выполняются равенства:

(*)
$$\lim_{x = x_0 = 0} f(x) = \lim_{x = x_0 = 0} f(x) = f(x^0)$$

Все элементарные функции, входящие в данную функцию, непрерывны на своих интервалах, поэтому проверять непрерывность будем в точках «склеивания».

$$\frac{x=-1}{\lim_{\substack{x=-1\\x=1=0}} f(x)} \prod_{\substack{x=-1=0\\x=1}} x \prod_{1}$$

$$\lim_{\substack{x=-1\\x=1=0\\x=1=0}} f(x) \prod_{\substack{x=-1=0\\x=1=0}} x^2 \prod_{1} (-1) \prod_{1} (-1) \prod_{1} (-1) \prod_{2} (-1) \prod_{1} (-1) \prod_{2} (-1) \prod_{1} (-1) \prod_{1} (-1) \prod_{2} (-1) \prod_{1} (-1) \prod_{2} (-1) \prod_{1} (-1) \prod_{1} (-1) \prod_{2} (-1) \prod_{1} (-1) \prod_{$$


Сравниваем эти три числа и видим, что первое равенство в (*) не выполняется. Следовательно, $x \square \square 1$ - точка разрыва I рода, причем неустранимого (т.е. скачок).

$$\frac{x=2}{\lim_{\substack{x \supseteq 2 \supseteq 0 \\ x \supseteq 2}}} \lim_{\substack{x \supseteq 2 \supseteq 0 \\ x \supseteq 2}} f(x) = \lim_{\substack{x \supseteq 2 \supseteq 0 \\ x \supseteq 2}} (x^2 \supseteq 1) = 2 \supseteq 1 \supseteq 2 \supseteq 5$$

$$\lim_{\substack{x \supseteq 2 \supseteq 0 \\ x \supseteq 2}} f(x) = 2 \supseteq 1 \supseteq 5$$

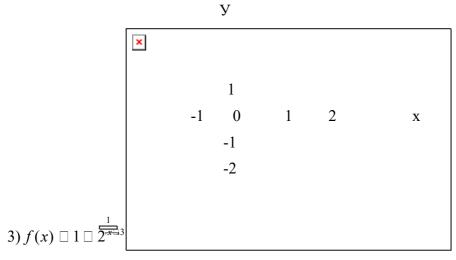
Сравниваем эти три числа и видим, что все равенства в (*) выполняются. Следовательно, в точке $x \square 2$ данная функция непрерывна.

	10		
×	У		
	5	y=7-x	
	4		
	3		
	2		
	1	$y=x^2+1$	
I			

На графике функции на конце прямой $y \square x$ в точке (-1,-1) ставим стрелку, так как функция $f(x) \square x$ при x, строго меньшем -1, а при $x \square \square 1$ значение функции f(x) вычисляется уже по другой формуле $x^2 \square 1$. Причем в точках непрерывности никаких стрелок не ставится.

$$(2) f(x) \square \underbrace{x^2 \square 3x \square 2}_{x \square 1}$$

O.Д.3.
$$x \square 1$$
.


Так как $x \square 1$ не входит в область допустимых значений (О.Д.3.) функции, то $x \square 1$ является точкой разрыва данной функции. Выясним с помощью односторонних

пределов, разрыв какого рода терпит функция в этой точке.

$$\lim_{\substack{x \supseteq 1 \supseteq 0 \\ x \supseteq 1}} f(x) = \lim_{\substack{x \supseteq 1 \supseteq 0 \\ x \supseteq 1}} \underbrace{x^2 \supseteq 3x \supseteq 2}_{x \supseteq 1} = \lim_{\substack{x \supseteq 1 \supseteq 0 \\ x \supseteq 1}} \underbrace{x \supseteq 1}_{x \supseteq 1} = \lim_{\substack{x \supseteq 1 \supseteq 0 \\ x \supseteq 1}} (x \supseteq 2) = 1$$

$$\lim_{\substack{x \supseteq 1 \supseteq 0 \\ x \supseteq 1}} f(x) = \lim_{\substack{x \supseteq 1 \supseteq 0}} \underbrace{\frac{x^2 \square 3x \square 2}{-x \square 1}} = \lim_{\substack{x \supseteq 1 \supseteq 0}} \underbrace{\frac{(x \square 2)(x \square 1)}{-x \square 1}} = \lim_{\substack{x \supseteq 1 \supseteq 0}} (x \square 2) = 1$$

Получили, что в (*) первое равенство выполняется, а функция f(1) не существует, т.е. второе равенство не выполняется. Следовательно, x=1 — точка разрыва I рода, причем устранимого. На графике выкалывается точка (1,-1) стрелками, так как x=1 не входит в О.Д.3.

О.Д.З. $x \square \square 3$. Значит x=-3 - точка разрыва.

Определяем тип разрыва функции в этой точке. Для этого опять находим левый и правый пределы при $x \square \square 3$.

Левый предел.

Правый предел.

$$\lim_{\substack{x = 3 = 0 \\ x = 3}} f(x) = \lim_{\substack{x = 3 = 0 \\ x = 3}} = 2^{\frac{1}{x-3}} = 2$$

получился бесконечный предел, поэтому x=-3 – точка разрыва II рода.


Исследуем поведение функции при $x \square \square$

Найти производные функций:

1)
$$y \Box e^{x_3 \Box_5 x^2 \Box_4 x^{\Box}_{12}}$$
 $y \Box (e^{x^3 \Box_5 x^2 \Box_4 x^{\Box}_{12}}) \Box$

Moжно представить данную функцию как $y \Box_e^u$,
 e^u ,
 $e^$

